论文阅读-Null-text Inversion for Editing Real Images using Guided Diffusion Models

一、论文信息

作者团队:

论文链接:https://arxiv.org/pdf/2211.09794.pdf

代码链接:https://github.com/google/prompt-to-prompt

二、Conditional Diffusion(classifier-free guidance)

Classifier-free guidance方法训练:

对于有条件的训练集(如图文对数据集),以某个概率p将其中的某些条件置为空,然后进行训练。

实际生成:

三、DDIM Inversion

  • DDPM生成图像的反向去噪过程(由Xt 去预测Xt-1):

当随机噪声的系数=0,此时变为确定性采样过程,一旦初始的噪声XT确定了,样本的生成也就变为确定过程。

  • DDIM inversion:

DDIM的逆过程,即对于原图像进行加噪,最终得到一张噪声图。

将该噪声图作为采样起点进行去噪,最终又会生成原图像(即实现对原图像的重建过程)。这一整个过程常被用于图像编辑等任务。

四、Null-text Inversion

  • 动机

利用DDIM Inversion做图像重建或图像编辑任务时,直接做有条件的DDIM重建会导致误差累积,从而导致重建结果逐渐偏离原图像;

现有的图像编辑方法大多需要对模型进行微调,或对模型权重、内部结构等进行优化,操作起来比较复杂。

  • 本文方法:null-text inversion

首先对输入图像提取caption,然后在每个采样时间步t,都利用以下损失函数对null-text embedding进行优化

约束损失:

最终得到每个采样时间节点t所对应的优化后的null-text embedding,并实现对图像的重建。

利用DDIM Inversion得到的ZT和优化后的null-text embedding序列,可以实现有条件的图像编辑。

  • 实验结果

相关推荐
网安INF12 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
张较瘦_14 小时前
[论文阅读] 软件工程工具 | EVOSCAT可视化工具如何重塑软件演化研究
论文阅读·软件工程
果粒橙_LGC14 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
AustinCyy14 小时前
【论文笔记】Multi-Agent Based Character Simulation for Story Writing
论文阅读
张较瘦_19 小时前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
dundunmm19 小时前
【论文阅读】SIMBA: single-cell embedding along with features(1)
论文阅读·深度学习·神经网络·embedding·生物信息·单细胞·多组学
TuringAcademy1 天前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
图灵学术计算机论文辅导2 天前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪
七元权3 天前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
有Li5 天前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生