Pytorch中的resize和reshape

torch.reshape()

官方文档的大致意思是:

返回与输入具有相同数据和元素数量的张量,但是具有指定形状。如果可能,返回的张量将是输入的视图,也就是说原本的tensor并没有被改变,如果想要改变那么就将改变的tensor赋值给原本的就行,即:tensor_temp = torch.reshape(tensor_temp, xxx))。

个人理解是给数组一个新的形状,数据和元素数量及顺序不变,按照形状截断、重新拼起来成为一个张量,可以使用reshape用来增加数组的维度。

代码示例:

python 复制代码
import torch
a=torch.tensor([[[1,2,3],[4,5,6]],
                [[7,8,9],[10,11,12]]])
print("a的shape:",a.shape)
b=torch.reshape(a,((4,3,1)))
print("b:",b)
print("b的shape:",b.shape)
python 复制代码
a的shape: torch.Size([2, 2, 3])
b: tensor([[[ 1],
         [ 2],
         [ 3]],

        [[ 4],
         [ 5],
         [ 6]],

        [[ 7],
         [ 8],
         [ 9]],

        [[10],
         [11],
         [12]]])
b的shape: torch.Size([4, 3, 1])

占位符-1:

python 复制代码
import torch
a=torch.tensor([[[1,2,3],[4,5,6]],
                [[7,8,9],[10,11,12]]])
b=torch.reshape(a,(-1,))
c=torch.reshape(a,(-1,1))
d=torch.reshape(a,((-1,1,1)))
e=torch.reshape(a,((-1,1,1,1)))
f=torch.reshape(a,((-1,3,4)))

# a的shape:torch.Size([2, 2, 3])
# b的shape:torch.Size([12])
# c的shape:torch.Size([12, 1])
# d的shape: torch.Size([12, 1, 1])
# e的shape: torch.Size([12, 1, 1, 1])
# f的shape: torch.Size([1, 3, 4])

-1表示表示其具体值由其他维度信息和元素总个数推断出来。

一个使用场景:

对于torch.nn.functional.conv2d这个函数

python 复制代码
torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

其中参数input -- input tensor of shape (minibatch, in_channels, iH, iW)是一个4D张量,如果要把下面这样一个输入矩阵,变为4D张量,就可以使用reshape函数。

\[1,2,0,3,1\], \[0,1,2,3,1\], \[1,2,1,0,0\], \[5,2,3,1,1\], \[2,1,0,1,1\]

python 复制代码
input = torch.reshape(input,[1,1,5,5])

torch.transforms.Resize()

transforms.Resize()可以作为数据预处理管道中的一个步骤,用于将输入的图像按照指定的大小或缩放因子进行调整。这样可以确保输入的图像满足模型的输入要求,或者保持不同数据样本具有相同的输入尺寸,在训练或推理过程中方便批次处理。

用来调整PILImage对象 的尺寸,注意不能是用io.imread或者cv2.imread 读取的图片,这两种方法得到的是ndarray ,input只能是PIL Image or Tensor

python 复制代码
from torchvision import transforms

img_path = "xxx"
img = Image.open(img_path)

trans1 = transforms.Resize([h, w]) # 同时指定长宽,写为trans1 = transforms.Resize((h, w))也是可以的,transforms.Resize 接受的参数可以是整数、元组或列表。
trans2 = transforms.Resize(x) # 将图片短边缩放至x,长宽比保持不变

img1 = trans1(img)
img2 = trans2(img)

resize虽然会改变图片的长宽比,但是本身并没有发生裁切,仍可以通过resize方法返回原来的形状。

要注意的一点是PILImage对象size属性返回的是w, h,而resize的参数顺序是h, w。

参考:

https://blog.csdn.net/qq_51533157/article/details/122816008

https://blog.csdn.net/qq_35008185/article/details/118224044

https://segmentfault.com/a/1190000043683736

相关推荐
昨日之日20062 分钟前
Fun-ASR - 多语言多方言的高精度语音识别软件 支持50系显卡 一键整合包下载
人工智能·音视频·语音识别
AIGC科技16 分钟前
焕新而来,境由AI生|AIRender升级更名“渲境AI”,重新定义设计渲染效率
人工智能·深度学习·图形渲染
出来吧皮卡丘19 分钟前
A2UI:让 AI Agent 自主构建用户界面的新范式
前端·人工智能·aigc
nju_spy23 分钟前
深度强化学习 TRPO 置信域策略优化实验(sb3_contrib / 手搓 + CartPole-v1 / Breakout-v5)
人工智能·强化学习·共轭梯度法·策略网络·trpo·sb3_contrib·breakout游戏
程序员欣宸26 分钟前
LangChain4j实战之四:集成到spring-boot
java·人工智能·spring boot
cmdyu_27 分钟前
告别 LLM 输出的不确定性:深度解析 TypeChat 如何重塑 AI 工程化开发
人工智能
想你依然心痛28 分钟前
AI赋能编程语言挑战赛:从Python到Rust,我用AI大模型重塑开发效率
人工智能·python·rust
测试人社区-千羽29 分钟前
AR/VR应用测试核心要点与实施策略
人工智能·安全·职场和发展·自动驾驶·测试用例·ar·vr
人工智能技术咨询.37 分钟前
DNN案例一步步构建深层神经网络
人工智能·神经网络
机器之心39 分钟前
让谷歌翻身的Gemini 3,上线Flash版
人工智能·openai