Flink State 状态原理解析 | 京东物流技术团队

State 用于记录 Flink 应用在运行过程中,算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的,则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。

Flink 应用运行中会保存状态信息到 State 对象实例中,State 对象实例通过 StateBackend 实现将相关数据存储到 FS 文件系统或者 RocksDB 数据库中。在Flink应用运行过程中,通过 checkpoint 快照定期地保存状态数据。并在 Flink 应用重启时加载checkpoint/savepoint 来实现状态的恢复,从而让 Flink 应用继续完成之前的数据计算,实现数据精确一次向下游传递。

分为以下3类:

  • 基于内存的 HeapStateBackend。状态存储在内存中。
  • 基于 HDFS 或 OSS 的 FsStateBackend。状态存储在内存,并在做 cp(checkpoint)时存到远端。
  • 基于 RocksDB 的 RocksDBStateBackend。将对象序列化成二进制存在内存和本地磁盘的 RocksDB 数据中,并在 cp 时存到远端。

HeapStateBackend 和 RocksDBStateBackend 分别对应在 TaskManager 内存模型中的位置:

RocksDBStateBackend 中存储结构:

namespace: 在不同的 namespace 下存在相同名称的状态。

1.1.1 State 状态持久化

通过 Chandy-Lamport 分布式快照算法进行 checkpoint 完成状态数据的持久化。然后在 Flink 应用重启时读取 State 状态数据,进行运行现场的还原。

chekcpoint 分类:

  • 基于内存的全量 checkpoint
  • HDFS 全量 checkpoint
  • RocksDB 全量 checkpoint/增量 checkpoint

1.2 State 基于算子和数据分组的分类

State 可分为 Operator State 和 Keyed State 两类。

  • Operator State(称为 non-keyed state)

常常存在于Source, Sink中。具体实现类例如:

  • BroadcastState

例:Kafka Source 中用 OperatorState 记录 offset。

  • Keyed State

任何类型的 keyed state 都可以有有效期(TTL),所有状态类型都支持单元素的 TTL。 这意味着 List 元素和 Map 映射元素将独立到期。

例:SQL GroupBy/PartitionBy 后的窗口中的数据,每个 key 都有对应的 State。key 与 key 之间的 State 数据不可见。

keyed state 的具体实现类:

  • ValueState
  • MapState
  • ListState
  • AggregatingState
  • ReducingState
  • 。。。。。

Flink State思维导图:

Keyed State Operator State
适用算子类型 只适用于KeyedStream上的算子 可用于所有算子
状态分配 每个Key对应一个状态 一个算子子任务对应一个状态
横向扩展 状态随着keyBy的分组KeyGroup自动在多个算子子任务上迁移 有多种状态重新分配的方式
创建和访问方式 自定义算子(重写RichFunction,通过State 名称从 getRuntimeContext方法创建或获得 State ) 实现 CheckpointedFunction 等接口
支持数据结构 ValueState、ListState、MapState等 ListState、BroadcastState等

二、常见状态相关处理流程

  1. Kafka Source 如何存储 OperatorState?

    class FlinkKafkaConsumerBase {
    private transient ListState<Tuple2<KafkaTopicPartition, Long>> unionOffsetStates; // state名称:"topic-partition-offset-states"
    // 特殊的State类型:Union State
    }

unionOffsetStates这个变量就是 OperatorState类型的。

  1. Map算子如何存储需要累计的数据?
  • ValueState/MapState/ListState/...

思考:keyby 后的数据分发与多并行度 subtask 之间的关系是怎样的?

首先,datastream 中数据经过 keyby 之后,会划分到各个 KeyedStream 中。每个 KeyedStream 有自己的 KeyedState(如ValueState/ListState/MapState)。

其次,KeyedStream 中的数据会以 KeyGroup 方式组织在一起。KeyGroup 是 Flink 重新分发 key state 的最小单元。

最后,KeyGroup 中的数据会通过取模最大并行度的方式分散到各个 subtask 中。以下是关键源码:

复制代码
KeyGroupStreamPartitioner#selectChannel(record)
{
    K key;
    key = keySelector.getKey(record.getInstance().getValue());
    return KeyGroupRangeAssignment.assignKeyToParallelOperator(
            key, maxParallelism, numberOfChannels);
}
--KeyGroupRangeAssignment#assignKeyToParallelOperator()
    {
    return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));
    }
    --KeyGroupRangeAssignment#computeOperatorIndexForKeyGroup()
      公式:OperatorIndex = keyGroupId * parallelism / maxParallelism
    --KeyGroupRangeAssignment#assignToKeyGroup()
      {
        return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);
       }

2.2 修改并行度场景时 State 状态存储的变化

2.3 State 与 Checkpoint 关系

分布式快照 Checkpoint 的概念,定期将 State 持久化到 外部存储系统(HDFS/OSS) 上。用户可以通过实现 CheckpointedFunction 接口来使用 operator state。通过 barrier 来对齐 checkpoint,等待 State 持久化完成(此过程参数不同也可能是异步的)。

常见 State 与 CP 相关的问题

  • State 状态过大。现象为多个算子或单个算子多个 subtask 做 checkpoint 慢,可导致 CP 对齐时间长,严重时会导致 CP 超时。
  • 数据倾斜导致某个 subtask 处理不及时。现象为单个算子少数几个 subtask 做 checkpoint 慢,导致 CP 对齐时间长。严重时会导致 CP 超时。
  • 大作业(并行度搞)频繁做 CP,会频繁上传小文件,导致 HDFS 集群小文件过多。

常用解决措施:调大托管内存大小。

三、参考文档:

作者:京东物流 吴云涛

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

相关推荐
子榆.3 小时前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
新芒3 小时前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
忆~遂愿3 小时前
CANN ATVOSS 算子库深度解析:基于 Ascend C 模板的 Vector 算子子程序化建模与融合优化机制
大数据·人工智能
艾莉丝努力练剑4 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
lili-felicity5 小时前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_933670796 小时前
2026 高职大数据专业考什么证书对就业有帮助?
大数据
xiaobaibai1536 小时前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
星辰_mya6 小时前
Elasticsearch更新了分词器之后
大数据·elasticsearch·搜索引擎
xiaobaibai1536 小时前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
悟纤6 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api