模型能力赋能搜索——零样本分类(Zero-Shot Classification)在搜索意图识别上的探索

什么是Zero-Shot Classification

https://huggingface.co/tasks/zero-shot-classification

hugging face上的零样本分类模型

facebook/bart-large-mnli

https://huggingface.co/facebook/bart-large-mnli

当然这是一个英文模型,我们要去用一些多语言的模型。

可以在这里找更多适合自己的

https://huggingface.co/models

零样本分类能力测试效果

当然这是一个英文模型,我们要去用一些多语言的模型。

可以先看看中文效果,也还行

问:请帮我润色一下这句话

分类结果:

用英文测试

问答

问答

问答

总结

摘要

总结

这个案例还是很经典的。它表面上是在问答,实际上是要做总结。

测试结论

从上述的测试用例来看,分类效果还是很不错的。这样实际上我是可以使用该模型,进行问题意图识别的。因为搜索框,对话框,被传进来的内容类型是未知的。但是不同类型的问题,去到不同的分支上,效果一定是最好的。就像上边的测试案例。通过模型,可以推测出来,输入框的内容到底是什么意图,是总结任务?还是摘要任务?还是问答任务?

在模型中,我们只需要去定义已知的和能够处理的分支即可。轻松利用模型的能力,来做意图识别。

当然这是一个初步的探索。想要获得更好的效果,还会要进行模型调优的。

相关推荐
万行1 分钟前
机器学习&第六.七章决策树,集成学习
人工智能·python·算法·决策树·机器学习·集成学习
aigcapi1 分钟前
AI 获客系统哪个好?矩阵系统哪个好?2026 客观测评 TOP4
大数据·人工智能·矩阵
草莓熊Lotso3 分钟前
Linux 2.6 内核 O(1) 调度队列深度解析:为什么它能实现常数时间调度?
linux·运维·服务器·数据结构·人工智能·哈希算法·散列表
渡我白衣3 分钟前
从森林到梯度——梯度提升树的原理、调参与实战
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·自然语言处理
Dylan的码园5 分钟前
稀疏 MoE 与原生多模态双驱:2025 大模型技术演进全景
人工智能·机器学习·ai作画·数据挖掘·boosting·oneflow
_-CHEN-_5 分钟前
Prompt Manager: 让你的 AI 提示词管理更专业
人工智能·prompt
weixin_397578026 分钟前
Transformer 架构 “Attention Is All You Need“
人工智能
檀越剑指大厂7 分钟前
AI 当主程还能远程开发?TRAE SOLO 的实用体验与cpolar内网突破
人工智能
哥只是传说中的小白9 分钟前
无需验证手机Sora2也能用!视频生成,创建角色APi接入教程,开发小白也能轻松接入
数据库·人工智能
lkbhua莱克瓦2410 分钟前
参数如何影响着大语言模型
人工智能·llm·大语言模型