模型能力赋能搜索——零样本分类(Zero-Shot Classification)在搜索意图识别上的探索

什么是Zero-Shot Classification

https://huggingface.co/tasks/zero-shot-classification

hugging face上的零样本分类模型

facebook/bart-large-mnli

https://huggingface.co/facebook/bart-large-mnli

当然这是一个英文模型,我们要去用一些多语言的模型。

可以在这里找更多适合自己的

https://huggingface.co/models

零样本分类能力测试效果

当然这是一个英文模型,我们要去用一些多语言的模型。

可以先看看中文效果,也还行

问:请帮我润色一下这句话

分类结果:

用英文测试

问答

问答

问答

总结

摘要

总结

这个案例还是很经典的。它表面上是在问答,实际上是要做总结。

测试结论

从上述的测试用例来看,分类效果还是很不错的。这样实际上我是可以使用该模型,进行问题意图识别的。因为搜索框,对话框,被传进来的内容类型是未知的。但是不同类型的问题,去到不同的分支上,效果一定是最好的。就像上边的测试案例。通过模型,可以推测出来,输入框的内容到底是什么意图,是总结任务?还是摘要任务?还是问答任务?

在模型中,我们只需要去定义已知的和能够处理的分支即可。轻松利用模型的能力,来做意图识别。

当然这是一个初步的探索。想要获得更好的效果,还会要进行模型调优的。

相关推荐
凯子坚持 c5 小时前
构建企业级 AI 工厂:基于 CANN `cann-mlops-suite` 的端到端 MLOps 实战
人工智能
Elwin Wong5 小时前
浅析OpenClaw:从“贾维斯”梦想看下一代 AI 操作系统的架构演进
人工智能·agent·clawdbot·moltbot·openclaw
Rorsion5 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
AI资源库5 小时前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型
凯子坚持 c5 小时前
StreamingLLM:无需训练即可支持无限上下文的推理技术
人工智能
Tfly__5 小时前
在PX4 gazebo仿真中加入Mid360(最新)
linux·人工智能·自动驾驶·ros·无人机·px4·mid360
LLWZAI5 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
深圳市九鼎创展科技5 小时前
瑞芯微 RK3399 开发板 X3399 评测:高性能 ARM 平台的多面手
linux·arm开发·人工智能·单片机·嵌入式硬件·边缘计算
HELLO程序员5 小时前
Claude Code 2.1 发布:2026 年 AI 智能体开发的范式革命
人工智能
DFCED6 小时前
OpenClaw部署实战:5分钟搭建你的专属AI数字员工(附避坑指南)
人工智能·大模型·agent·openclaw