金融专题 | 对复杂的金融工具进行设计、定价和对冲分析

金融行业使用 Financial Instruments Toolbox™ 执行现金流建模和收益率曲线拟合分析、计算价格和敏感度、查看价格演变,并使用普通股权和固定收益建模方法执行对冲分析。

借助该工具箱,您可以创建新的金融工具类型,使用参数拟合模型和息票剥离法根据市场数据拟合收益率曲线,并构建基于双曲线的定价模型。

您可以对固定收益和股权工具进行定价和分析。

对于固定收益建模,您可以计算几种类型的证券和衍生品的价格、收益率、价差和敏感度值,包括可转换债券、抵押贷款支持证券、国库券、债券、掉期交易、利率顶、利率底和浮动利率票据。

对于股权,您可以计算普通期权和几种奇异衍生品的价格、隐含波动率和敏感度值。

Financial Instruments Toolbox™ 提供用于对固定收益、信用和股权工具投资组合进行定价、建模和分析的函数。该工具箱包含用于对交易对手信用风险和 CVA 风险敞口建模的函数。

对于信用衍生品,此工具箱提供信用违约掉期定价和违约概率曲线建模函数。对于能源衍生品,您可以为奇异期权和普通期权建模。你还可以借助此工具箱连接到 Numerix® CrossAsset Integration Layer。

下面我们就来看一下具体的应用。

基于对象的定价框架

使用模块化对象,对多个金融工具分别定价,或作为投资组合进行总体定价。

基于可重用对象的定价工作流

创建工具、模型和定价器对象以用于金融工具定价。

轻松重用这些对象来比较不同模型和定价引擎下的工具定价。

金融工具投资组合定价

定义多级投资组合(如根据标的资产、交易方、策略和团队),然后计算该组合中所有工具的总体价格和敏感度。

单个金融工具定价工作流。

金融工具投资组合定价工作流。

利率工具

期限结构建模和利率工具定价。

收益率曲线和利率期限结构

使用几种方法根据市场数据拟合收益率曲线,这些方法包括息票剥离法、参数模型(例如 Nelson-Siegel、Svensson 和平滑样条)以及自定义函数。

工具

使用各种定价方法和模型,计算固定收益证券、掉期、远期掉期以及基于期权/嵌入式期权和共同利率期权(包括债券期权、浮动利率票据期权、利率顶、利率底和掉期期权)的固定收益工具的价格和敏感度。

模型和方法

支持的模型包括 Black、Normal (Bachelier)、SABR 和 Shifted SABR、Hull-White、Black-Derman-Toy、Black-Karasinski、CIR、HJM、Linear Gaussian Two Factor 和 LIBOR 市场模型。支持的方法包括闭式解、二叉树、三叉树和 Monte Carlo 模拟。

瞬时远期曲线。

树状结构图。

Shifted Black 波动率。

股权和能源工具

使用各种方法计算普通和奇异期权的价格和敏感度。

工具

对普通期权进行定价,包括欧式、美式和百慕大期权。对奇异期权进行定价,包括亚式、障碍、一篮子、指状、远期/期货、彩虹和价差期权。

模型

支持的模型包括几何布朗运动 (Geometric Brownian Motion)、Merton76 跳跃扩散 (Merton76 jump diffusion)、贝茨和赫斯顿 (Bates and Heston) 随机波动率模型以及局部波动率模型。

方法

支持的方法包括闭式解、树模型、Monte Carlo 模拟和有限差分。

看涨期权价格敏感度。

基于不同定价模型的欧式看涨期权价格。

使用 Longstaff-Schwartz 方法对摆动期权定价。

信用和抵押贷款工具

计算信用和抵押贷款工具(例如信用违约掉期 (CDS)、抵押贷款支持证券 (MBS) 和抵押担保债券 (CMO))的价格和敏感度。

CDS 和 CDS 期权

执行普通 CDS 和 CDS 期权估值,计算盈亏平衡点差,以及计算新 CDS 合同和现有 CDS 合同的公允价值。

抵押支持证券 (MBS)、抵押贷款池和抵押担保债券 (CMO)

计算 MBS、抵押贷款池投资组合和 CMO 的价格和风险因素。对于计划摊还 (PAC) 或目标摊还 (TAC) 债券,支持的 CMO 提前偿还分级方案包括顺序偿还分级和计划债券分级。

CDS 期权定价。

两种条件偿还率下抵押贷款池的每月现金流和抵押贷款余额。

金融工具的交易对手信用风险

使用 MATLAB 示例计算信用价值调整 (CVA) 和错向风险。

信用价值调整 (CVA)

计算场外交易 (OTC) 合约中每个交易对手的信用风险敞口和 CVA。

错向风险

使用 copula 函数生成敞口与违约场景的相关性对组,然后根据这些场景估计信用敞口。

贴现的预期交易对手信用风险敞口。

敞口与信用场景的相关性对组。

相关推荐
超级大咸鱼7 小时前
verilog利用线性插值实现正弦波生成器(dds)
matlab·fpga·dds·线性插值
阿坡RPA15 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499315 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心15 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI17 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c18 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20518 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清18 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh19 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员19 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn