在pytorch中将数据打包为DataLoader后每个epoch中的打乱策略
有两种打乱策略:
1、利用shuffle
在 PyTorch 中,当使用 DataLoader 并设置 shuffle=True 时,数据会在每个 epoch 开始时被重新打乱。这意味着在每个 epoch,数据加载的顺序都会不同,这有助于模型避免对特定的数据顺序产生过拟合。
python
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0)
在这种情况下,每次开始一个新的 epoch 并从 train_loader 中迭代数据时,train_loader 会自动将数据集中的数据打乱。这是一种常见的做法,用于确保模型接收到的数据顺序在每个 epoch 都是随机的,从而帮助模型更好地泛化。
如果 shuffle 参数被设置为 False,则数据加载的顺序在每个 epoch 中保持不变。这种情况通常用于那些需要保持数据顺序的场合,比如时间序列数据处理。
2、利用SubsetRandomSampler
在这种方法中,DataLoader 实例是通过使用 SubsetRandomSampler 创建的,这与直接在 DataLoader 中设置 shuffle=True 有所不同。当使用 SubsetRandomSampler 时,数据集的划分是固定的,但是在这个子集内的数据在每个 epoch 开始时会被重新打乱。
python
train_data = torch.FloatTensor(train_data)
train_data = TensorDataset(train_data, train_data)
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(num_train * valid_size))
train_idx, valid_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(dataset=train_data,
batch_size=batch_size,
sampler=train_sampler,
# shuffle = True,
num_workers=0)
valid_loader = torch.utils.data.DataLoader(dataset=train_data,
batch_size=batch_size,
sampler=valid_sampler,
# shuffle = True,
num_workers=0)
在这种情况下,train_loader 和 valid_loader 使用 SubsetRandomSampler,它在每个 epoch 开始时会在其所对应的索引子集(train_idx 或 valid_idx)内部重新打乱数据。因此,尽管整个数据集的划分(训练集和验证集的分割)是固定的,但在每个 epoch 中,数据加载的顺序在各自的子集内是随机的。
这种方法结合了固定的训练/验证划分和每个 epoch 的内部随机性,有助于模型的泛化,同时保持了对训练和验证数据集的稳定划分。