在pytorch中将数据打包为DataLoader后每个epoch中的打乱策略

在pytorch中将数据打包为DataLoader后每个epoch中的打乱策略

有两种打乱策略:

1、利用shuffle

在 PyTorch 中,当使用 DataLoader 并设置 shuffle=True 时,数据会在每个 epoch 开始时被重新打乱。这意味着在每个 epoch,数据加载的顺序都会不同,这有助于模型避免对特定的数据顺序产生过拟合。

python 复制代码
    train_loader = DataLoader(dataset=train_dataset, 
                              batch_size=batch_size, 
                              shuffle=True, 
                              num_workers=0)

在这种情况下,每次开始一个新的 epoch 并从 train_loader 中迭代数据时,train_loader 会自动将数据集中的数据打乱。这是一种常见的做法,用于确保模型接收到的数据顺序在每个 epoch 都是随机的,从而帮助模型更好地泛化。

如果 shuffle 参数被设置为 False,则数据加载的顺序在每个 epoch 中保持不变。这种情况通常用于那些需要保持数据顺序的场合,比如时间序列数据处理。

2、利用SubsetRandomSampler

在这种方法中,DataLoader 实例是通过使用 SubsetRandomSampler 创建的,这与直接在 DataLoader 中设置 shuffle=True 有所不同。当使用 SubsetRandomSampler 时,数据集的划分是固定的,但是在这个子集内的数据在每个 epoch 开始时会被重新打乱。

python 复制代码
    train_data = torch.FloatTensor(train_data)

    train_data = TensorDataset(train_data, train_data)

    num_train = len(train_data)
    indices = list(range(num_train))
    np.random.shuffle(indices)
    split = int(np.floor(num_train * valid_size))

    train_idx, valid_idx = indices[split:], indices[:split]

    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)

    train_loader = torch.utils.data.DataLoader(dataset=train_data,
                                               batch_size=batch_size,
                                               sampler=train_sampler,
                                               # shuffle = True,
                                               num_workers=0)

    valid_loader = torch.utils.data.DataLoader(dataset=train_data,
                                               batch_size=batch_size,
                                               sampler=valid_sampler,
                                               # shuffle = True,
                                               num_workers=0)

在这种情况下,train_loader 和 valid_loader 使用 SubsetRandomSampler,它在每个 epoch 开始时会在其所对应的索引子集(train_idx 或 valid_idx)内部重新打乱数据。因此,尽管整个数据集的划分(训练集和验证集的分割)是固定的,但在每个 epoch 中,数据加载的顺序在各自的子集内是随机的。

这种方法结合了固定的训练/验证划分和每个 epoch 的内部随机性,有助于模型的泛化,同时保持了对训练和验证数据集的稳定划分。

相关推荐
子夜江寒40 分钟前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
工藤学编程2 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅3 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102167 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
智航GIS7 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
没学上了7 小时前
CNNMNIST
人工智能·深度学习
jarreyer7 小时前
摄像头相关记录
python