数据分析 | 频率编码和标签编码 | Python代码

数据集见GitHub链接:https://github.com/ChuanTaoLai/Frequency-Encoding-And-Label-Encoding

标签编码:

python 复制代码
import pandas as pd
from sklearn.preprocessing import LabelEncoder

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

'''标签编码'''
label_encoder = LabelEncoder()
df1 = pd.DataFrame()
df2 = pd.DataFrame()

df1['Attack_Types'] = label_encoder.fit_transform(data1['Attack_Types'])
df2['Attack_Types'] = label_encoder.transform(data2['Attack_Types'])

df1.to_excel('KDDTrain_label_encoded.xlsx', index=False)
df2.to_excel('KDDTest_label_encoded.xlsx', index=False)

频率编码:

python 复制代码
import pandas as pd

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

df1 = data1[['protocol_type', 'service', 'flag']].copy()
df2 = data2[['protocol_type', 'service', 'flag']].copy()

'''频率编码'''
for col in df1.columns:
    df1[col + '_frequency_encoded'] = df1[col].map(df1[col].value_counts(normalize=True))

for col in df2.columns:
    df2[col + '_frequency_encoded'] = df2[col].map(df2[col].value_counts(normalize=True))

df1.to_excel('KDDTrain_frequency_encoded.xlsx', index=False)
df2.to_excel('KDDTest_frequency_encoded.xlsx', index=False)
相关推荐
逍遥德7 分钟前
JPA 操作对象图 (Object Graph) 详解
开发语言·python
deephub18 分钟前
DeepSeek 开年王炸:mHC 架构用流形约束重构 ResNet 残差连接
人工智能·python·深度学习·神经网络·残差链接
上班职业摸鱼人22 分钟前
MMDetection 框架完整教程(从入门到实战,代码可复现)
python
意趣新24 分钟前
OpenCV 中摄像头视频采集 + 实时显示 + 视频保存
python·opencv·计算机视觉
清水白石00826 分钟前
《Python 中 deque vs list:性能差异全解析与高效数据结构实战指南》
数据结构·python·list
智航GIS31 分钟前
7.2 Try Except语句
开发语言·python
程序员佳佳39 分钟前
026年AI开发实战:从GPT-5.2到Gemini-3,如何构建下一代企业级Agent架构?
开发语言·python·gpt·重构·api·ai写作·agi
橙露1 小时前
Python 图形任意角度旋转完整解决方案:原理、实现与可视化展示
开发语言·python
大模型铲屎官1 小时前
【操作系统-Day 46】文件系统核心探秘:深入理解连续分配与链式分配的实现与优劣
人工智能·python·深度学习·大模型·操作系统·文件系统·计算机组成原理