数据分析 | 频率编码和标签编码 | Python代码

数据集见GitHub链接:https://github.com/ChuanTaoLai/Frequency-Encoding-And-Label-Encoding

标签编码:

python 复制代码
import pandas as pd
from sklearn.preprocessing import LabelEncoder

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

'''标签编码'''
label_encoder = LabelEncoder()
df1 = pd.DataFrame()
df2 = pd.DataFrame()

df1['Attack_Types'] = label_encoder.fit_transform(data1['Attack_Types'])
df2['Attack_Types'] = label_encoder.transform(data2['Attack_Types'])

df1.to_excel('KDDTrain_label_encoded.xlsx', index=False)
df2.to_excel('KDDTest_label_encoded.xlsx', index=False)

频率编码:

python 复制代码
import pandas as pd

data1 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTrain.xlsx')
data2 = pd.read_excel(r'D:\0文献整理\网络入侵检测\KDD99\KDDTest_without_unkown.xlsx')

df1 = data1[['protocol_type', 'service', 'flag']].copy()
df2 = data2[['protocol_type', 'service', 'flag']].copy()

'''频率编码'''
for col in df1.columns:
    df1[col + '_frequency_encoded'] = df1[col].map(df1[col].value_counts(normalize=True))

for col in df2.columns:
    df2[col + '_frequency_encoded'] = df2[col].map(df2[col].value_counts(normalize=True))

df1.to_excel('KDDTrain_frequency_encoded.xlsx', index=False)
df2.to_excel('KDDTest_frequency_encoded.xlsx', index=False)
相关推荐
老鱼说AI10 分钟前
论文精读第七期:告别昂贵的人工标注!Math-Shepherd:如何用“零成本”自动化过程监督,让大模型数学能力暴涨?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·boosting
抠头专注python环境配置25 分钟前
基于Python与深度学习的智能垃圾分类系统设计与实现
pytorch·python·深度学习·分类·垃圾分类·vgg·densenet
愈努力俞幸运42 分钟前
flask 入门 token, headers,cookie
后端·python·flask
安特尼1 小时前
X 推荐算法分析
算法·机器学习·推荐算法
梦想是成为算法高手1 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
用什么都重名1 小时前
Conda 虚拟环境安装配置路径详解
windows·python·conda
阿也在北京1 小时前
基于Neo4j和TuGraph的知识图谱与问答系统搭建——胡歌的导演演员人际圈
python·阿里云·知识图谱·neo4j
计算机徐师兄1 小时前
Python基于知识图谱的胆囊炎医疗问答系统(附源码,文档说明)
python·知识图谱·胆囊炎医疗问答系统·python胆囊炎医疗问答系统·知识图谱的胆囊炎医疗问答系统·python知识图谱·医疗问答系统
北冥码鲲1 小时前
【保姆级教程】从零入手:Python + Neo4j 构建你的第一个知识图谱
python·知识图谱·neo4j