人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

目录

人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码

[1. 前言](#1. 前言)

2.人体关键点检测方法

(1)Top-Down(自上而下)方法

(2)Bottom-Up(自下而上)方法:

3.人体关键点检测数据集

4.人体检测模型训练

5.人体关键点检测模型训练

(1)项目安装

(2)准备Train和Test数据

(3)配置文件configs

(4)开始训练

(5)Tensorboard可视化训练过程

6.人体关键点检测检测模型效果

7.人体关键点检测(推理代码)下载

8.人体关键点检测(训练代码)下载

9.人体关键点检测C++/Android版本


1. 前言

人体关键点检测(Human Keypoints Detection)又称为人体姿态估计2D Pose,是计算机视觉中一个相对基础的任务,是人体动作识别、行为分析、人机交互等的前置任务。一般情况下可以将人体关键点检测细分为单人/多人关键点检测、2D/3D关键点检测,同时有算法在完成关键点检测之后还会进行关键点的跟踪,也被称为人体姿态跟踪。

本项目将实现人体关键点检测 算法,其中使用YOLOv5模型实现人体检测(Person Detection),使用HRNet,LiteHRNet和Mobilenet-v2模型实现人体关键点检测 。项目分为数据集说明,模型训练C++/Android部署 等多个章节,本篇是项目《人体关键点检测(人体姿势估计) 》系列文章之Pytorch实现人体关键点检测(人体姿势估计);为了方便后续模型工程化和Android平台部署,项目支持高精度HRNet检测模型,轻量化模型LiteHRNet和Mobilenet模型训练和测试,并提供Python/C++/Android多个版本;

轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求。下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度

|--------------|----------------|---------------|------------|--------|
| 模型 | input-size | params(M) | GFLOPs | AP |
| HRNet-w32 | 192×256 | 28.48M | 5734.05M | 0.7585 |
| LiteHRNet18 | 192×256 | 1.10M | 182.15M | 0.6237 |
| Mobilenet-v2 | 192×256 | 2.63M | 529.25M | 0.6181 |

先展示一下人体关键点检测效果:

Android人体关键点检测 APP Demo体验(下载):https://download.csdn.net/download/guyuealian/88610359

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/134837816


更多项目《人体关键点检测(人体姿势估计)》系列文章请参考:


2.人体关键点检测方法

目前主流的人体关键点检测(人体姿势估计) 方法主要两种:一种是Top-Down (自上而下)方法,另外一种是Bottom-Up(自下而上)方法;

(1)Top-Down( 自上而下****)****方法

将人体检测和**人体关键点检测(人体姿势估计)**检测分离,在图像上首先进行人体目标检测,定位人体位置;然后crop每一个人体图像,再估计人体关键点;这类方法往往比较慢,但姿态估计准确度较高。目前主流模型主要有CPN,Hourglass,CPM,Alpha Pose,HRNet等。

(2)Bottom-Up( 自下而上****)****方法:

先估计图像中所有人体关键点,然后在通过Grouping的方法组合成一个一个实例;因此这类方法在测试推断的时候往往更快速,准确度稍低。典型就是COCO2016年人体关键点检测冠军Open Pose。

通常来说,Top-Down具有更高的精度,而Bottom-Up具有更快的速度; 就目前调研而言, Top-Down的方法研究较多,精度也比Bottom-Up (自下而上)方法高。本项目采用Top-Down( 自上而下****)****方法,先使用YOLOv5模型实现人体检测,然后再使用HRNet进行人体关键点检测(人体姿势估计);

本项目基于开源的HRNet进行改进,关于HRNet项目请参考GitHub

HRNet: https://github.com/leoxiaobin/deep-high-resolution-net.pytorch


3.人体关键点检测数据集

本项目主要使用COCO数据集和MPII数据集,关于人体关键点检测数据集说明,请参考《人体关键点检测1:人体姿势估计数据集https://blog.csdn.net/guyuealian/article/details/134703548


4.人体检测模型训练

本项目采用Top-Down( 自上而下****)**** 方法,使用YOLOv5模型实现人体目标检测,使用HRNet进行人体关键点检测(人体姿势估计);关于人体检测模型训练方法,可参考 :

行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码)


5.人体关键点检测模型训练

整套工程项目基本结构如下:

bash 复制代码
.
├── configs              # 训练配置文件
├── data                 # 一些数据
├── libs                 # 一些工具库
├── pose                 # 姿态估计模型文件
├── work_space           # 训练输出工作目录
├── demo.py              # 模型推理demo文件
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

(1)项目安装

推荐使用Python3.8或Python3.7,更高版本可能存在版本差异问题,项目依赖python包请参考requirements.txt,使用pip安装即可**,项目代码都在Ubuntu系统和Windows系统验证正常运行,请放心使用;若出现异常,大概率是相关依赖包版本没有完全对应**

bash 复制代码
numpy==1.21.6
matplotlib==3.2.2
Pillow==8.4.0
bcolz==1.2.1
easydict==1.9
onnx==1.8.1
onnx-simplifier==0.2.28
onnxoptimizer==0.2.0
onnxruntime==1.6.0
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
sklearn==0.0
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
pycocotools==2.0.2
pybaseutils==0.9.4
basetrainer

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好Python开发环境):

(2)准备Train和Test数据

下载COCO数据集 或者MPII数据集 (建议使用COCO数据集),然后:

  • COCO数据集下载并解压到本地,存储目录结构参考如下(原始图片目录和标注信息文件在同一级目录)
bash 复制代码
─── COCO
    ├── train2017
    │   ├── images                           # COCO训练集原始图片目录
    │   └── person_keypoints_train2017.json  # COCO训练集标注信息文件
    └── val2017
        ├── images                           # COCO验证集原始图片目录
        └── person_keypoints_val2017.json    # COCO验证集标注信息文件
  • MPII数据集下载并解压到本地,存储目录结构参考如下
bash 复制代码
─── MPII
    ├── images      # MPII数据集原始图片目录
    ├── train.json  # MPII训练集标注信息文件
    └── valid.json  # MPII训练集标注信息文件

(3)配置文件configs

项目支持HRNet以及轻量化模型LiteHRNet和Mobilenet模型训练,并提供对应的配置文件;你需要修改对应配置文件的数据路径;本篇以训练HRNet-w32为例子,其配置文件在configs/coco/hrnet/w32_adam_192_192.yaml,修改该文件的训练数据集路径TRAIN_FILE(支持多个数据集训练)和测试数据集TEST_FILE的数据路径为你本地数据路径,其他参数保持默认即可,如下所示:

python 复制代码
WORKERS: 8
PRINT_FREQ: 10
DATASET:
  DATASET: 'custom_coco'
  TRAIN_FILE:
    - 'D:/COCO/train2017/person_keypoints_train2017.json'
  TEST_FILE: 'D:/COCO/val2017/person_keypoints_val2017.json'
  FLIP: true
  ROT_FACTOR: 45
  SCALE_FACTOR: 0.3
  SCALE_RATE: 1.25
  JOINT_IDS: [0,1]
  FLIP_PAIRS: [ ]
  SKELETON: [ ]

配置文件的一些参数说明,请参考

|------------------|--------|-------------|--------------------------------|
| 参数 | 类型 | 参考值 | 说明 |
| WORKERS | int | 8 | 数据加载处理的进程数 |
| PRINT_FREQ | int | 10 | 打印LOG信息的间隔 |
| DATASET | str | custom_coco | 数据集类型,目前仅支持COCO数据格式 |
| TRAIN_FILE | List | - | 训练数据集文件列表(COCO数据格式),支持多个数据集 |
| TEST_FILE | string | - | 测试数据集文件(COCO数据格式),仅支持单个数据集 |
| FLIP | bool | True | 是否翻转图片进行测试,可提高测试效果 |
| ROT_FACTOR | float | 45 | 训练数据随机旋转的最大角度,用于数据增强 |
| SCALE_FACTOR | float | 1.25 | 图像缩放比例因子 |
| SCALE_RATE | float | 0.25 | 图像缩放率 |
| JOINT_IDS | list | [ ] | [ ]表示所有关键点,也可以指定需要训练的关键点序号ID |
| FLIP_PAIRS | list | [ ] | 图像翻转时,关键点不受翻转影响的ID号 |
| SKELETON | list | [ ] | 关键点连接线的序列列表,用于可视化效果 |

(4)开始训练

修改好配置文件后,就可以开始准备训练了:

  • 训练高精度模型HRNet-w48或者HRNet-w32
bash 复制代码
# 高精度模型:HRNet-w32
python train.py  -c "configs/coco/hrnet/w48_adam_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
# 高精度模型:HRNet-w48
python train.py  -c "configs/coco/hrnet/w32_adam_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
  • 训练轻量化模型LiteHRNet
bash 复制代码
# 轻量化模型:LiteHRNet
python train.py  -c "configs/coco/litehrnet/litehrnet18_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"
  • 训练轻量化模型Mobilenetv2
bash 复制代码
# 轻量化模型:Mobilenet
python train.py  -c "configs/coco/mobilenet/mobilenetv2_192_192.yaml" --workers=8 --batch_size=32 --gpu_id=0 --work_dir="work_space/person"

下表格给出HRNet,以及轻量化模型LiteHRNet和Mobilenet的计算量和参数量,以及其检测精度AP; 高精度检测模型HRNet-w32,AP可以达到0.7585,但其参数量和计算量比较大,不合适在移动端部署;LiteHRNet18和Mobilenet-v2参数量和计算量比较少,合适在移动端部署;虽然LiteHRNet18的理论计算量和参数量比Mobilenet-v2低,但在实际测试中,发现Mobilenet-v2运行速度更快。轻量化Mobilenet-v2模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约50ms左右,GPU约30ms左右 ,基本满足业务的性能需求

|--------------|----------------|---------------|------------|--------|
| 模型 | input-size | params(M) | GFLOPs | AP |
| HRNet-w32 | 192×256 | 28.48M | 5734.05M | 0.7585 |
| LiteHRNet18 | 192×256 | 1.10M | 182.15M | 0.6237 |
| Mobilenet-v2 | 192×256 | 2.63M | 529.25M | 0.6181 |

(5)Tensorboard可视化训练过程

复制代码
训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:
bash 复制代码
# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir="work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/log"

点击终端TensorBoard打印的链接,即可在浏览器查看训练LOG信息等:


6.人体关键点检测检测模型效果

demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了;demo.py命令行参数说明如下:

参数 类型 参考值 说明
-c,--config_file str - 配置文件
-m,--model_file str - 模型文件
target str - 骨骼点类型,如hand,coco_person,mpii_person
image_dir str data/image 测试图片的路径
video_file str,int - 测试的视频文件
out_dir str output 保存结果,为空不保存
threshold float 0.3 关键点检测置信度
device str cuda:0 GPU ID

下面以运行HRNet-w32为样例,其他模型修改--config_file或者--model_file即可

  • 测试图片
bash 复制代码
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --image_dir data/test_images --out_dir output
  • 测试视频文件
bash 复制代码
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --video_file data/video-test.mp4 --out_dir output
  • 测试摄像头
bash 复制代码
python demo.py -c work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_17_192_256_custom_coco_20231115_092948_1789/model/best_model_195_0.7585.pth --video_file 0 --out_dir output

项目同时支持MPII数据集格式人体关键点检测

  • 测试图片(MPII格式的人体关键点检测)
bash 复制代码
python demo.py -c work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/w32_adam_192_192.yaml -m work_space/person/hrnet_w32_16_192_256_mpii_20231127_113836_6644/model/best_model_148_89.4041.pth --image_dir data/test_images --out_dir output --target mpii_person

运行效果(支持单人和多人人体关键点检测):


7.人体关键点检测(推理代码)下载

人体关键点检测推理代码下载地址:Pytorch实现人体关键点检测(人体姿势估计)推理代码

资源内容包含:

  1. 提供YOLOv5人体检测推理代码(不包含训练代码)
  2. 提供人体关键点检测(人体姿势估计)推理代码demo.py(不包含训练代码)
  3. 提供高精度版本HRNet人体关键点检测(人体姿势估计)(不包含训练代码)
  4. 提供轻量化模型LiteHRNet,以及Mobilenet-v2人体关键点检测(人体姿势估计)(不包含训练代码)
  5. 提供训练好的模型:HRNet-w32,LiteHRNet和Mobilenet-v2模型权重文件,配置好环境,可直接运行demo.py
  6. 推理代码demo.py支持图片,视频和摄像头测试

如果你需要配套的训练数据集和训练代码,请查看下面部分


8.人体关键点检测(训练代码)下载

人体关键点检测训练代码下载地址

资源内容包含:

  1. 提供YOLOv5人体检测推理代码
  2. 提供整套完整的项目工程代码,包含人体关键点检测(人体姿势估计)的训练代码 train.py和推理测试代码demo.py
  3. 提供高精度版本HRNet人体关键点检测(人体姿势估计)训练和测试代码
  4. 提供轻量化模型LiteHRNet以及Mobilenet-v2人体关键点检测(人体姿势估计)训练和测试代码
  5. 项目代码支持MPII数据集和COCO数据集人体关键点检测模型训练和测试
  6. 根据本篇博文说明,简单配置即可开始训练:train.py
  7. 提供训练好的模型:HRNet-w32,LiteHRNet和Mobilenet-v2模型权重文件,配置好环境,可直接运行demo.py
  8. 推理代码demo.py支持图片,视频和摄像头测试

9.人体关键点检测C++/Android版本

Android人体关键点检测 APP Demo体验(下载):https://download.csdn.net/download/guyuealian/88610359

相关推荐
南宫理的日知录28 分钟前
99、Python并发编程:多线程的问题、临界资源以及同步机制
开发语言·python·学习·编程学习
coberup37 分钟前
django Forbidden (403)错误解决方法
python·django·403错误
龙哥说跨境1 小时前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
小白学大数据1 小时前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman9111 小时前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路1 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼3 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷4 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover5 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者6 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python