每天五分钟计算机视觉:VGG网络相对于AlexNet网络有哪些不同?

本文重点

在前面的课程中,我们已经学习了VGG网络模型,也学习了AlexNet网络模型,AlexNet模型先于VGG网络模型产生,所以VGG在一定程度上要优于AlexNet模型,二者来看一下,二者究竟有什么不同?

深度

AlexNet是一个8层的卷积神经网络,而VGG16是它的两倍,众所周知,神经网络的深度越大,往往学习能力越强,所以VGG的性能相对于AlexNet有了一个明显的提升。

卷积核

VGG相对于AlexNet模型,VGG只使用了3*3的卷积核,这带来了参数量的极大减少,我们来比较一下。

AlexNet的第一个卷积层输出维度96维,而卷积核大小为11*11,那么参数量为96*3*11

VGG的参数量为64*3*3*3

96*3*11/(64*3*3*3)=20

也就是说二者相差20倍,那么计算量就相差了20倍,这就是的VGG虽然深度比AlexNet大,但是参数量却没有增加的很夸装,整个模型只有550M,而8层的AlexNet达到了240M。

池化

VGG中池化的核大小为2*2,然后步长为2。而AlexNet中采用了重叠池化方案,核大小为3*3,步长为2。这样不重叠的池化的计算量会少一些。但是重叠的池化能够有效的降低过拟合问题。

数据增强

VGG使用了更多的数据增强的方式,即Scale Jittering。先固定一种裁剪尺寸m*m,比如224*224,然后把图片的最短边缩放到一个大于m的值,长边也相应的变化,最后裁剪出一张m*m的图片。

这种方法比直接将图片缩放到224*224来说,存在更大的操作空间,当然有可能剪掉图片的重要区域,但是在大数据下,这种影响可以忽略不计。

相关推荐
张拭心18 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩18 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.11820 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t1987512820 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技20 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe20 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen20 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿20 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫21 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能
唯道行21 小时前
计算机图形学·23 Weiler-Athenton多边形裁剪算法
算法·计算机视觉·几何学·计算机图形学·opengl