每天五分钟计算机视觉:VGG网络相对于AlexNet网络有哪些不同?

本文重点

在前面的课程中,我们已经学习了VGG网络模型,也学习了AlexNet网络模型,AlexNet模型先于VGG网络模型产生,所以VGG在一定程度上要优于AlexNet模型,二者来看一下,二者究竟有什么不同?

深度

AlexNet是一个8层的卷积神经网络,而VGG16是它的两倍,众所周知,神经网络的深度越大,往往学习能力越强,所以VGG的性能相对于AlexNet有了一个明显的提升。

卷积核

VGG相对于AlexNet模型,VGG只使用了3*3的卷积核,这带来了参数量的极大减少,我们来比较一下。

AlexNet的第一个卷积层输出维度96维,而卷积核大小为11*11,那么参数量为96*3*11

VGG的参数量为64*3*3*3

96*3*11/(64*3*3*3)=20

也就是说二者相差20倍,那么计算量就相差了20倍,这就是的VGG虽然深度比AlexNet大,但是参数量却没有增加的很夸装,整个模型只有550M,而8层的AlexNet达到了240M。

池化

VGG中池化的核大小为2*2,然后步长为2。而AlexNet中采用了重叠池化方案,核大小为3*3,步长为2。这样不重叠的池化的计算量会少一些。但是重叠的池化能够有效的降低过拟合问题。

数据增强

VGG使用了更多的数据增强的方式,即Scale Jittering。先固定一种裁剪尺寸m*m,比如224*224,然后把图片的最短边缩放到一个大于m的值,长边也相应的变化,最后裁剪出一张m*m的图片。

这种方法比直接将图片缩放到224*224来说,存在更大的操作空间,当然有可能剪掉图片的重要区域,但是在大数据下,这种影响可以忽略不计。

相关推荐
Hcoco_me13 分钟前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto23 分钟前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙24 分钟前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错31 分钟前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.35 分钟前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务
core5121 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数
阿湯哥1 小时前
Spring AI Alibaba 实现 Workflow 全指南
java·人工智能·spring
Tezign_space1 小时前
Agent Skills 详解:5大核心能力架构与AI Agent落地实践
人工智能·架构·生成式ai·ai agent·上下文工程·skills·agent skills
m0_466525291 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
用户5191495848451 小时前
Linux PAM环境变量注入漏洞利用工具解析
人工智能·aigc