每天五分钟计算机视觉:VGG网络相对于AlexNet网络有哪些不同?

本文重点

在前面的课程中,我们已经学习了VGG网络模型,也学习了AlexNet网络模型,AlexNet模型先于VGG网络模型产生,所以VGG在一定程度上要优于AlexNet模型,二者来看一下,二者究竟有什么不同?

深度

AlexNet是一个8层的卷积神经网络,而VGG16是它的两倍,众所周知,神经网络的深度越大,往往学习能力越强,所以VGG的性能相对于AlexNet有了一个明显的提升。

卷积核

VGG相对于AlexNet模型,VGG只使用了3*3的卷积核,这带来了参数量的极大减少,我们来比较一下。

AlexNet的第一个卷积层输出维度96维,而卷积核大小为11*11,那么参数量为96*3*11

VGG的参数量为64*3*3*3

96*3*11/(64*3*3*3)=20

也就是说二者相差20倍,那么计算量就相差了20倍,这就是的VGG虽然深度比AlexNet大,但是参数量却没有增加的很夸装,整个模型只有550M,而8层的AlexNet达到了240M。

池化

VGG中池化的核大小为2*2,然后步长为2。而AlexNet中采用了重叠池化方案,核大小为3*3,步长为2。这样不重叠的池化的计算量会少一些。但是重叠的池化能够有效的降低过拟合问题。

数据增强

VGG使用了更多的数据增强的方式,即Scale Jittering。先固定一种裁剪尺寸m*m,比如224*224,然后把图片的最短边缩放到一个大于m的值,长边也相应的变化,最后裁剪出一张m*m的图片。

这种方法比直接将图片缩放到224*224来说,存在更大的操作空间,当然有可能剪掉图片的重要区域,但是在大数据下,这种影响可以忽略不计。

相关推荐
Xiaok10189 分钟前
解决 Hugging Face SentenceTransformer 下载失败的完整指南:ProxyError、SSLError与手动下载方案
开发语言·神经网络·php
程序员Linc10 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh18 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能21 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820930 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能31 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI37 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四40 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy1 小时前
AI 重构老旧系统:创业新曙光
人工智能·重构