每天五分钟计算机视觉:VGG网络相对于AlexNet网络有哪些不同?

本文重点

在前面的课程中,我们已经学习了VGG网络模型,也学习了AlexNet网络模型,AlexNet模型先于VGG网络模型产生,所以VGG在一定程度上要优于AlexNet模型,二者来看一下,二者究竟有什么不同?

深度

AlexNet是一个8层的卷积神经网络,而VGG16是它的两倍,众所周知,神经网络的深度越大,往往学习能力越强,所以VGG的性能相对于AlexNet有了一个明显的提升。

卷积核

VGG相对于AlexNet模型,VGG只使用了3*3的卷积核,这带来了参数量的极大减少,我们来比较一下。

AlexNet的第一个卷积层输出维度96维,而卷积核大小为11*11,那么参数量为96*3*11

VGG的参数量为64*3*3*3

96*3*11/(64*3*3*3)=20

也就是说二者相差20倍,那么计算量就相差了20倍,这就是的VGG虽然深度比AlexNet大,但是参数量却没有增加的很夸装,整个模型只有550M,而8层的AlexNet达到了240M。

池化

VGG中池化的核大小为2*2,然后步长为2。而AlexNet中采用了重叠池化方案,核大小为3*3,步长为2。这样不重叠的池化的计算量会少一些。但是重叠的池化能够有效的降低过拟合问题。

数据增强

VGG使用了更多的数据增强的方式,即Scale Jittering。先固定一种裁剪尺寸m*m,比如224*224,然后把图片的最短边缩放到一个大于m的值,长边也相应的变化,最后裁剪出一张m*m的图片。

这种方法比直接将图片缩放到224*224来说,存在更大的操作空间,当然有可能剪掉图片的重要区域,但是在大数据下,这种影响可以忽略不计。

相关推荐
格林威2 分钟前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
大千AI助手2 分钟前
Graph-R1:智能图谱检索增强的结构化多轮推理框架
人工智能·神经网络·大模型·rag·检索增强生成·大千ai助手·graph-r1
瑞禧生物ruixibio21 分钟前
ABA-Biotin,脱落酸-生物素,用于追踪ABA在植物细胞中的分布及运输路径
人工智能
哔哩哔哩技术38 分钟前
B站基础安全在AI溯源方向的探索实践
人工智能
IT_陈寒44 分钟前
7个鲜为人知的JavaScript性能优化技巧,让你的网页加载速度提升50%
前端·人工智能·后端
城数派1 小时前
1951-2100年全球复合极端气候事件数据集
人工智能·数据分析
菜鸟‍1 小时前
【论文学习】基于 Transformer 的图像分割模型
深度学习·学习·transformer
Hody911 小时前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj1 小时前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名1 小时前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构