pytorch中A网络的embedding层的权重参数已经初始化为F了,copy.deepcopy(A)的结果网络也跟着初始化为F吗?

A网络的embedding层的权重参数已经通过 self.embedding.weight.data.copy_(pretrained_embeddings)初始化为F,那么 copy.deepcopy(A)的结果网络也跟着初始化为F了嘛?

在使用copy.deepcopy()方法进行深拷贝时,只有对象的属性值才会被拷贝,而对象的方法、类属性等则不会被拷贝。

在问题中,如果使用copy.deepcopy(A)方法对模型A进行深拷贝,那么得到的新模型的权重参数将与模型A的权重参数是独立的,而不会共享相同的内存空间。新模型的权重参数的值将会与模型A的权重参数的值相同,即都是预训练的词向量,但它们是两个独立的张量对象,它们在内存中的地址不同,修改其中一个张量的值不会影响到另一个张量的值。

下面是一个简单的例子,展示了copy.deepcopy()方法对模型对象的行为:

python 复制代码
import copy
import torch
import torch.nn as nn

pretrained_embeddings = torch.randn(10000, 100)

class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.embedding = nn.Embedding(10000, 100)
        self.embedding.weight.data.copy_(pretrained_embeddings)

model_A = MyModel()
model_B = copy.deepcopy(model_A)

print(model_A.embedding.weight is model_B.embedding.weight)  # False
print(model_A.embedding.weight.data_ptr() == model_B.embedding.weight.data_ptr())  # False

在上面的代码中,我们首先定义了一个包含预训练词向量的模型MyModel。然后,我们使用copy.deepcopy()方法对模型对象进行深拷贝,得到了一个新的模型对象model_B。最后,我们通过比较model_Amodel_B中的embedding.weight属性,展示了它们是两个独立的张量对象。

python 复制代码
class MyModel(nn.Module):
     def __init__(self):
         super().__init__()         
         self.embedding = nn.Embedding(10000, 100)  
         self.embedding.weight.data.copy_(pretrained_embeddings) 

这个网络中的embedding层会反向更新吗?

在PyTorch中,默认情况下,所有的参数(包括nn.Embedding中的参数)都会进行反向更新。也就是说,当我们通过反向传播计算梯度后,优化器会根据梯度信息来更新网络中所有的参数。

如果希望nn.Embedding中的参数不参与反向更新,可以将它的requires_grad属性设置为False。这样,即使计算出了梯度,优化器也不会更新它的值。

具体而言,在代码中,由于预训练词向量已经被拷贝到了self.embedding.weight.data中,因此可能希望不对self.embedding.weight进行反向更新。可以通过以下代码来实现:

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.embedding = nn.Embedding(10000, 100)
        self.embedding.weight.data.copy_(pretrained_embeddings)
        self.embedding.weight.requires_grad = False  # 设置 requires_grad=False

    def forward(self, inputs):
        return self.embedding(inputs)

在上面的代码中,我们在模型的初始化函数中将self.embedding.weight.requires_grad设置为False,从而禁用了self.embedding.weight的反向更新。这样,即使我们调用了backward()方法计算梯度,优化器也不会更新self.embedding.weight的值。

相关推荐
fsnine6 分钟前
机器学习——数据清洗
人工智能·机器学习
小猿姐1 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生1 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习
吱吱企业安全通讯软件1 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
盲盒Q2 小时前
《频率之光:共振之战》
人工智能·硬件架构·量子计算
飞哥数智坊2 小时前
DeepSeek V3.1 发布:我们等的 R2 去哪了?
人工智能·deepseek
爱分享的飘哥2 小时前
第八十三章:实战篇:文 → 图:Prompt 控制图像生成系统构建——从“咒语”到“神作”的炼成!
人工智能·计算机视觉·prompt·文生图·stablediffusion·diffusers·text-to-image
ciku2 小时前
Spring Ai Advisors
人工智能·spring·microsoft
努力还债的学术吗喽2 小时前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
云边云科技3 小时前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售