adaptive原理

在 Spark 中,Adaptive Query Execution (AQE) 是一个先进的查询优化特性,它能动态地调整查询计划,以便根据实际数据和执行情况进行优化。AQE 的引入是为了解决传统静态查询计划中的一些限制,特别是在数据分布和大小方面的估计误差。

AQE 的工作原理

1. 实时统计信息
  • AQE 在执行过程中收集实时统计信息,如每个阶段的输出数据大小和行数。
2. 动态调整计划
  • 基于这些实时统计信息,AQE 能够动态调整查询计划。例如,它可以在执行过程中更改 join 策略或 shuffle 分区的数量。
3. 优化 Join 策略
  • 如果初步计划中的某个 join 估计要处理的数据量远小于实际情况,AQE 可以将其从 sort-merge join 调整为 broadcast join。
4. 动态 Shuffle 分区
  • AQE 会根据 shuffle 阶段的实际数据大小动态调整分区数量,从而减少资源的浪费和提高处理效率。
5. 运行时 Skew Join 优化
  • 当 AQE 检测到数据倾斜时,它可以动态地对倾斜的键执行特殊的处理,比如将倾斜的键分到多个任务中去处理。

AQE 的优点

  • 性能提升:能根据实际数据分布动态优化查询,特别是在数据大小和分布与预期不符的情况下。
  • 资源利用率提高:通过减少不必要的资源分配,提高了整体资源的利用率。
  • 更好的稳定性:减少了因数据倾斜或不合理的资源分配导致的失败概率。

启用 AQE

在 Spark 3.0 及更高版本中,可以通过以下配置启用 AQE:

spark.conf.set("spark.sql.adaptive.enabled", "true")

注意事项

  • AQE 目前只在 Spark SQL 和 DataFrame API 中可用。
  • 在某些复杂的查询情况下,AQE 的优化决策可能不如预期,需要综合评估是否启用。
  • AQE 的行为和效果可能取决于具体的数据和查询类型。

总之,AQE 代表了 Spark 查询优化的一个重要方向,通过实时反馈和动态调整,提高了查询处理的效率和稳定性。

相关推荐
TeYiToKu41 分钟前
笔记整理—linux驱动开发部分(9)framebuffer驱动框架
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件·arm
dsywws44 分钟前
Linux学习笔记之时间日期和查找和解压缩指令
linux·笔记·学习
lzhlizihang1 小时前
【Hive sql 面试题】求出各类型专利top 10申请人,以及对应的专利申请数(难)
大数据·hive·sql·面试题
Hsu_kk1 小时前
Hive 查询各类型专利 Top 10 申请人及对应的专利申请数
数据仓库·hive·hadoop
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
静听山水1 小时前
Hive 的数据存储单元结构
hive
yeyuningzi1 小时前
Debian 12环境里部署nginx步骤记录
linux·运维·服务器
大数据编程之光1 小时前
Hive 查询各类型专利 top10 申请人及专利申请数
大数据·数据仓库·hive·hadoop
杰克逊的日记1 小时前
Hive详解
数据仓库·hive·hadoop
上辈子杀猪这辈子学IT1 小时前
【Zookeeper集群搭建】安装zookeeper、zookeeper集群配置、zookeeper启动与关闭、zookeeper的shell命令操作
linux·hadoop·zookeeper·centos·debian