adaptive原理

在 Spark 中,Adaptive Query Execution (AQE) 是一个先进的查询优化特性,它能动态地调整查询计划,以便根据实际数据和执行情况进行优化。AQE 的引入是为了解决传统静态查询计划中的一些限制,特别是在数据分布和大小方面的估计误差。

AQE 的工作原理

1. 实时统计信息
  • AQE 在执行过程中收集实时统计信息,如每个阶段的输出数据大小和行数。
2. 动态调整计划
  • 基于这些实时统计信息,AQE 能够动态调整查询计划。例如,它可以在执行过程中更改 join 策略或 shuffle 分区的数量。
3. 优化 Join 策略
  • 如果初步计划中的某个 join 估计要处理的数据量远小于实际情况,AQE 可以将其从 sort-merge join 调整为 broadcast join。
4. 动态 Shuffle 分区
  • AQE 会根据 shuffle 阶段的实际数据大小动态调整分区数量,从而减少资源的浪费和提高处理效率。
5. 运行时 Skew Join 优化
  • 当 AQE 检测到数据倾斜时,它可以动态地对倾斜的键执行特殊的处理,比如将倾斜的键分到多个任务中去处理。

AQE 的优点

  • 性能提升:能根据实际数据分布动态优化查询,特别是在数据大小和分布与预期不符的情况下。
  • 资源利用率提高:通过减少不必要的资源分配,提高了整体资源的利用率。
  • 更好的稳定性:减少了因数据倾斜或不合理的资源分配导致的失败概率。

启用 AQE

在 Spark 3.0 及更高版本中,可以通过以下配置启用 AQE:

spark.conf.set("spark.sql.adaptive.enabled", "true")

注意事项

  • AQE 目前只在 Spark SQL 和 DataFrame API 中可用。
  • 在某些复杂的查询情况下,AQE 的优化决策可能不如预期,需要综合评估是否启用。
  • AQE 的行为和效果可能取决于具体的数据和查询类型。

总之,AQE 代表了 Spark 查询优化的一个重要方向,通过实时反馈和动态调整,提高了查询处理的效率和稳定性。

相关推荐
zhangxueyi3 分钟前
如何理解Linux的根目录?与widows系统盘有何区别?
linux·服务器·php
可涵不会debug3 分钟前
C语言文件操作:标准库与系统调用实践
linux·服务器·c语言·开发语言·c++
yaoxin5211235 分钟前
第三章 C 开头的术语
sql·iris
ghx_echo7 分钟前
linux系统下的磁盘扩容
linux·运维·服务器
GIS数据转换器24 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
蘑菇丁38 分钟前
ansible 批量按用户名创建kerberos主体,并分发到远程主机
大数据·服务器·ansible
幻想编织者42 分钟前
Ubuntu实时核编译安装与NVIDIA驱动安装教程(ubuntu 22.04,20.04)
linux·服务器·ubuntu·nvidia
利刃大大2 小时前
【Linux入门】2w字详解yum、vim、gcc/g++、gdb、makefile以及进度条小程序
linux·c语言·vim·makefile·gdb·gcc
Yeats_Liao4 小时前
Navicat 导出表结构后运行查询失败ERROR 1064 (42000): You have an error in your SQL syntax;
数据库·sql
飞行的俊哥7 小时前
Linux 内核学习 3b - 和copilot 讨论pci设备的物理地址在内核空间和用户空间映射到虚拟地址的区别
linux·驱动开发·copilot