adaptive原理

在 Spark 中,Adaptive Query Execution (AQE) 是一个先进的查询优化特性,它能动态地调整查询计划,以便根据实际数据和执行情况进行优化。AQE 的引入是为了解决传统静态查询计划中的一些限制,特别是在数据分布和大小方面的估计误差。

AQE 的工作原理

1. 实时统计信息
  • AQE 在执行过程中收集实时统计信息,如每个阶段的输出数据大小和行数。
2. 动态调整计划
  • 基于这些实时统计信息,AQE 能够动态调整查询计划。例如,它可以在执行过程中更改 join 策略或 shuffle 分区的数量。
3. 优化 Join 策略
  • 如果初步计划中的某个 join 估计要处理的数据量远小于实际情况,AQE 可以将其从 sort-merge join 调整为 broadcast join。
4. 动态 Shuffle 分区
  • AQE 会根据 shuffle 阶段的实际数据大小动态调整分区数量,从而减少资源的浪费和提高处理效率。
5. 运行时 Skew Join 优化
  • 当 AQE 检测到数据倾斜时,它可以动态地对倾斜的键执行特殊的处理,比如将倾斜的键分到多个任务中去处理。

AQE 的优点

  • 性能提升:能根据实际数据分布动态优化查询,特别是在数据大小和分布与预期不符的情况下。
  • 资源利用率提高:通过减少不必要的资源分配,提高了整体资源的利用率。
  • 更好的稳定性:减少了因数据倾斜或不合理的资源分配导致的失败概率。

启用 AQE

在 Spark 3.0 及更高版本中,可以通过以下配置启用 AQE:

spark.conf.set("spark.sql.adaptive.enabled", "true")

注意事项

  • AQE 目前只在 Spark SQL 和 DataFrame API 中可用。
  • 在某些复杂的查询情况下,AQE 的优化决策可能不如预期,需要综合评估是否启用。
  • AQE 的行为和效果可能取决于具体的数据和查询类型。

总之,AQE 代表了 Spark 查询优化的一个重要方向,通过实时反馈和动态调整,提高了查询处理的效率和稳定性。

相关推荐
c***42103 分钟前
python的sql解析库-sqlparse
数据库·python·sql
源梦想10 分钟前
绝地幸存者H5割草网页小游戏Linux部署演示
linux·运维·服务器
WLJT12312312310 分钟前
芯片与电流:点亮生活的科技力量
大数据·人工智能·科技·生活
天下·第二16 分钟前
python处理【orc】下载压缩的.zip文件,windows和linux同时适配
linux·windows·python
凑齐六个字吧18 分钟前
单细胞LIANA受配体分析框架学习
linux·服务器·windows
syounger24 分钟前
德军 SAP 迁移受阻:S4/HANA 系统功能不稳定,全面上线再度推迟
大数据·人工智能
z***026028 分钟前
GaussDB数据库中SQL诊断解析之配置SQL限流
数据库·sql·gaussdb
w***95491 小时前
linux 网卡配置
linux·网络·php
盛满暮色 风止何安1 小时前
WAF的安全策略
linux·运维·服务器·网络·网络协议·安全·网络安全
B站计算机毕业设计之家1 小时前
Python+Flask 电商数据分析系统(Selenium爬虫+多元线性回归)商品数据采集分析可视化系统 实时监控 淘宝数据采集 大屏可视化 (附源码)✅
大数据·爬虫·python·selenium·机器学习·flask·线性回归