pytorch中的loss.backward()和optimizer.step()中的使用的梯度方向问题

python 复制代码
# 举例:梯度下降更新模型参数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# 在每个训练步骤中
optimizer.zero_grad()  # 清零梯度
output = model(input)
loss = loss_function(output, target)
loss.backward()       # 计算梯度
optimizer.step()       # 更新模型参数(沿着梯度的负方向)

在这个例子中,loss.backward() 计算的梯度方向是损失函数上升的方向,而 optimizer.step() 则使用了梯度的负方向来更新模型参数。

相关推荐
@心都13 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫15 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
Jackilina_Stone2 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
补三补四3 小时前
金融时间序列【量化理论】
机器学习·金融·数据分析·时间序列
Fansv5874 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
IT古董5 小时前
【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
深度学习·目标检测·计算机视觉
Jackilina_Stone5 小时前
【论文阅读笔记】知识蒸馏:一项调查 | CVPR 2021 | 近万字翻译+解释
论文阅读·人工智能·深度学习·蒸馏
咩咩大主教5 小时前
人工智能神经网络
人工智能·python·深度学习·神经网络·机器学习·bp神经网络