pytorch中的loss.backward()和optimizer.step()中的使用的梯度方向问题

python 复制代码
# 举例:梯度下降更新模型参数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# 在每个训练步骤中
optimizer.zero_grad()  # 清零梯度
output = model(input)
loss = loss_function(output, target)
loss.backward()       # 计算梯度
optimizer.step()       # 更新模型参数(沿着梯度的负方向)

在这个例子中,loss.backward() 计算的梯度方向是损失函数上升的方向,而 optimizer.step() 则使用了梯度的负方向来更新模型参数。

相关推荐
Dreaming_of_you39 分钟前
pytorch/cv2/pil/torchvision处理图像缩小的最佳方案
人工智能·pytorch·python·opencv
创业之路&下一个五年1 小时前
以教为学:在赋能他人中完成自我跃升
机器学习·自然语言处理·数据挖掘
机 _ 长1 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
美狐美颜sdk1 小时前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api
szcsun52 小时前
机器学习(二)-线性回归实战
人工智能·机器学习·线性回归
Yeats_Liao2 小时前
异步推理架构:CPU-NPU流水线设计与并发效率提升
python·深度学习·神经网络·架构·开源
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(一)seq2seq 模型
深度学习·ai
Yongqiang Cheng3 小时前
PyTorch Grid Sample
pytorch·grid sample
力学与人工智能3 小时前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
gsgbgxp3 小时前
WSL迁移至非系统盘
深度学习·ubuntu