pytorch中的loss.backward()和optimizer.step()中的使用的梯度方向问题

python 复制代码
# 举例:梯度下降更新模型参数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# 在每个训练步骤中
optimizer.zero_grad()  # 清零梯度
output = model(input)
loss = loss_function(output, target)
loss.backward()       # 计算梯度
optimizer.step()       # 更新模型参数(沿着梯度的负方向)

在这个例子中,loss.backward() 计算的梯度方向是损失函数上升的方向,而 optimizer.step() 则使用了梯度的负方向来更新模型参数。

相关推荐
程序员小嬛42 分钟前
(TETCI 2024) 从 U-Net 到 Transformer:即插即用注意力模块解析
人工智能·深度学习·机器学习·transformer
qq_527887873 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
小饼干超人4 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(三)Word2Vec
深度学习·ai
一行注释也不写5 小时前
【卷积层和池化层在CNN中的作用】
深度学习·计算机视觉·cnn
少林码僧5 小时前
2.30 传统行业预测神器:为什么GBDT系列算法在企业中最受欢迎
开发语言·人工智能·算法·机器学习·ai·数据分析
zm-v-159304339865 小时前
最新AI-Python自然科学领域机器学习与深度学习技术
人工智能·python·机器学习
郝学胜-神的一滴5 小时前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习
BHXDML5 小时前
第五章:支持向量机
算法·机器学习·支持向量机
Coco恺撒6 小时前
【脑机接口】难在哪里,【人工智能】如何破局(1.用户篇)
人工智能·深度学习·开源·生活·人机交互·智能家居