1.使用canny算法进行边缘提取
本实验比较简单,基本思路是对原图像进行一个高斯模糊处理,用于去噪,之后转换为灰度图,直接调用cv库中的canny记性边缘提取。若想直接得到彩色边缘,则通过按位与操作,将原始彩色图像和Canny边缘图像结合,得到彩色边缘图。具体完整代码如下:
python
# canny边缘提取实验
import cv2 as cv
import numpy as np
def edge_demo(image):
# 对输入的图像进行高斯模糊,去噪,其中高斯核模板大小为3*3,标准差为0
blurred = cv.GaussianBlur(image, (3, 3), 0)
# 转换为灰度图
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
# 使用Canny边缘检测算法,设置低阈值为50,高阈值为150,提取图像的边缘。经验设定
edge_output = cv.Canny(gray, 50, 150)
# 在窗口中显示Canny边缘提取的结果图像。
cv.imshow('Canny Edge', edge_output)
# 彩色边缘提取
# 通过按位与操作,将原始彩色图像和Canny边缘图像结合,得到彩色边缘图。
dst = cv.bitwise_and(image, image, mask=edge_output)
cv.imshow('Color Edge', dst)
# 绘图
src = cv.imread('ai.jpg')
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
edge_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果
原始图像:
灰度处理后canny算法提取的边缘图像
彩色边缘图像
2.使用大津法进行图像分割
本实验的原理也比较简单,使用大津法进行图像分割。大津法(Otsu's Method)是一种自适应阈值选取的方法,通常用于图像分割。其目标是通过最大化类间方差(类间方差是指分割后的两个类别之间的方差)来找到一个合适的阈值,将图像分为两个类别,一类为前景,一类为背景。这里我们绘制灰度直方图,并且使用OpenCV的threshold函数进行OTSU阈值化。并且将计算得到的阈值存储在 ret1 中,OTSU阈值化后的图像存储在 th1 中。其完整代码如下:
python
import cv2
import numpy as np
from matplotlib import pyplot as plt
image = cv2.imread("flying_horse.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.figure(figsize=(6, 6))
plt.imshow(image, cmap="gray")
plt.title("Source Image")
plt.xticks([]), plt.yticks([])
plt.show()
# 显示直方图
plt.figure(figsize=(6, 6))
# np.histogram 用于计算直方图的频率和边界。
hist, bins = np.histogram(image.ravel(), 256, [0, 256])
plt.plot(hist, color='black')
plt.title("Histogram")
plt.xlabel("Pixel Value")
plt.ylabel("Frequency")
plt.show()
# 使用OpenCV的threshold函数进行OTSU阈值化。
# 将计算得到的阈值存储在 ret1 中,OTSU阈值化后的图像存储在 th1 中。
ret1, th1 = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
# 显示OTSU阈值化后的图像
plt.figure(figsize=(6, 6))
plt.imshow(th1, cmap="gray")
plt.title("OTSU, Threshold: {}".format(ret1))
plt.xticks([]), plt.yticks([])
plt.show()
实验结果: