python批量处理数据脚本——目标检测数据标签的labelme格式转VOC格式

python 复制代码
import os
import json
from xml.etree.ElementTree import Element, SubElement, tostring, ElementTree

def labelme_to_voc(json_path, output_dir):
    with open(json_path, 'r') as f:
        labelme_data = json.load(f)

    img_filename = labelme_data['imagePath']
    img_width = labelme_data['imageWidth']
    img_height = labelme_data['imageHeight']
    shapes = labelme_data['shapes']

    # Create VOC XML structure
    root = Element('annotation')

    folder = SubElement(root, 'folder')
    folder.text = 'VOC'  # Customize folder name as needed

    filename = SubElement(root, 'filename')
    filename.text = os.path.basename(img_filename)

    size = SubElement(root, 'size')
    width = SubElement(size, 'width')
    width.text = str(img_width)
    height = SubElement(size, 'height')
    height.text = str(img_height)
    depth = SubElement(size, 'depth')
    depth.text = '3'  # Assuming RGB images

    for shape in shapes:
        label = shape['label']
        points = shape['points']

        object_elem = SubElement(root, 'object')
        name = SubElement(object_elem, 'name')
        name.text = label

        pose = SubElement(object_elem, 'pose')
        pose.text = 'Unspecified'

        truncated = SubElement(object_elem, 'truncated')
        truncated.text = '0'

        difficult = SubElement(object_elem, 'difficult')
        difficult.text = '0'

        bndbox = SubElement(object_elem, 'bndbox')
        xmin = SubElement(bndbox, 'xmin')
        xmin.text = str(min(points[0][0], points[1][0]))
        ymin = SubElement(bndbox, 'ymin')
        ymin.text = str(min(points[0][1], points[1][1]))
        xmax = SubElement(bndbox, 'xmax')
        xmax.text = str(max(points[0][0], points[1][0]))
        ymax = SubElement(bndbox, 'ymax')
        ymax.text = str(max(points[0][1], points[1][1]))

    # Save the VOC XML file
    xml_path = os.path.join(output_dir, os.path.splitext(os.path.basename(img_filename))[0] + '.xml')
    tree = ElementTree(root)
    tree.write(xml_path)

# Example usage
labelme_json_path = 'path/to/labelme.json'
output_directory = 'path/to/output'
labelme_to_voc(labelme_json_path, output_directory)

这只是一张图片的标签转换,要是一个数据集,则进行listdir遍历目录下的每个json标签即可。

相关推荐
喵~来学编程啦3 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
狂奔solar30 分钟前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE32 分钟前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
聪明的墨菲特i38 分钟前
Python爬虫学习
爬虫·python·学习
Chef_Chen2 小时前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
努力的家伙是不讨厌的2 小时前
解析json导出csv或者直接入库
开发语言·python·json
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
云空2 小时前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
凤枭香3 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
测试杂货铺3 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展