python批量处理数据脚本——目标检测数据标签的labelme格式转VOC格式

python 复制代码
import os
import json
from xml.etree.ElementTree import Element, SubElement, tostring, ElementTree

def labelme_to_voc(json_path, output_dir):
    with open(json_path, 'r') as f:
        labelme_data = json.load(f)

    img_filename = labelme_data['imagePath']
    img_width = labelme_data['imageWidth']
    img_height = labelme_data['imageHeight']
    shapes = labelme_data['shapes']

    # Create VOC XML structure
    root = Element('annotation')

    folder = SubElement(root, 'folder')
    folder.text = 'VOC'  # Customize folder name as needed

    filename = SubElement(root, 'filename')
    filename.text = os.path.basename(img_filename)

    size = SubElement(root, 'size')
    width = SubElement(size, 'width')
    width.text = str(img_width)
    height = SubElement(size, 'height')
    height.text = str(img_height)
    depth = SubElement(size, 'depth')
    depth.text = '3'  # Assuming RGB images

    for shape in shapes:
        label = shape['label']
        points = shape['points']

        object_elem = SubElement(root, 'object')
        name = SubElement(object_elem, 'name')
        name.text = label

        pose = SubElement(object_elem, 'pose')
        pose.text = 'Unspecified'

        truncated = SubElement(object_elem, 'truncated')
        truncated.text = '0'

        difficult = SubElement(object_elem, 'difficult')
        difficult.text = '0'

        bndbox = SubElement(object_elem, 'bndbox')
        xmin = SubElement(bndbox, 'xmin')
        xmin.text = str(min(points[0][0], points[1][0]))
        ymin = SubElement(bndbox, 'ymin')
        ymin.text = str(min(points[0][1], points[1][1]))
        xmax = SubElement(bndbox, 'xmax')
        xmax.text = str(max(points[0][0], points[1][0]))
        ymax = SubElement(bndbox, 'ymax')
        ymax.text = str(max(points[0][1], points[1][1]))

    # Save the VOC XML file
    xml_path = os.path.join(output_dir, os.path.splitext(os.path.basename(img_filename))[0] + '.xml')
    tree = ElementTree(root)
    tree.write(xml_path)

# Example usage
labelme_json_path = 'path/to/labelme.json'
output_directory = 'path/to/output'
labelme_to_voc(labelme_json_path, output_directory)

这只是一张图片的标签转换,要是一个数据集,则进行listdir遍历目录下的每个json标签即可。

相关推荐
程序猿追25 分钟前
深度解读 CANN HCCL:揭秘昇腾高性能集体通信的同步机制
神经网络·架构
历程里程碑36 分钟前
普通数组----合并区间
java·数据结构·python·算法·leetcode·职场和发展·tornado
weixin_3954489137 分钟前
mult_yolov5_post_copy.c_cursor_0205
c语言·python·yolo
User_芊芊君子41 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
执风挽^1 小时前
Python基础编程题2
开发语言·python·算法·visual studio code
纤纡.1 小时前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
Token_w1 小时前
CANN ops-cv解读——AIGC图像生成/目标检测的图像处理算子库
图像处理·目标检测·aigc
kjkdd1 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
小镇敲码人1 小时前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
萧鼎1 小时前
Python 包管理的“超音速”革命:全面上手 uv 工具链
开发语言·python·uv