python批量处理数据脚本——目标检测数据标签的labelme格式转VOC格式

python 复制代码
import os
import json
from xml.etree.ElementTree import Element, SubElement, tostring, ElementTree

def labelme_to_voc(json_path, output_dir):
    with open(json_path, 'r') as f:
        labelme_data = json.load(f)

    img_filename = labelme_data['imagePath']
    img_width = labelme_data['imageWidth']
    img_height = labelme_data['imageHeight']
    shapes = labelme_data['shapes']

    # Create VOC XML structure
    root = Element('annotation')

    folder = SubElement(root, 'folder')
    folder.text = 'VOC'  # Customize folder name as needed

    filename = SubElement(root, 'filename')
    filename.text = os.path.basename(img_filename)

    size = SubElement(root, 'size')
    width = SubElement(size, 'width')
    width.text = str(img_width)
    height = SubElement(size, 'height')
    height.text = str(img_height)
    depth = SubElement(size, 'depth')
    depth.text = '3'  # Assuming RGB images

    for shape in shapes:
        label = shape['label']
        points = shape['points']

        object_elem = SubElement(root, 'object')
        name = SubElement(object_elem, 'name')
        name.text = label

        pose = SubElement(object_elem, 'pose')
        pose.text = 'Unspecified'

        truncated = SubElement(object_elem, 'truncated')
        truncated.text = '0'

        difficult = SubElement(object_elem, 'difficult')
        difficult.text = '0'

        bndbox = SubElement(object_elem, 'bndbox')
        xmin = SubElement(bndbox, 'xmin')
        xmin.text = str(min(points[0][0], points[1][0]))
        ymin = SubElement(bndbox, 'ymin')
        ymin.text = str(min(points[0][1], points[1][1]))
        xmax = SubElement(bndbox, 'xmax')
        xmax.text = str(max(points[0][0], points[1][0]))
        ymax = SubElement(bndbox, 'ymax')
        ymax.text = str(max(points[0][1], points[1][1]))

    # Save the VOC XML file
    xml_path = os.path.join(output_dir, os.path.splitext(os.path.basename(img_filename))[0] + '.xml')
    tree = ElementTree(root)
    tree.write(xml_path)

# Example usage
labelme_json_path = 'path/to/labelme.json'
output_directory = 'path/to/output'
labelme_to_voc(labelme_json_path, output_directory)

这只是一张图片的标签转换,要是一个数据集,则进行listdir遍历目录下的每个json标签即可。

相关推荐
databook6 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar7 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户8356290780517 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_7 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
CoovallyAIHub9 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub9 小时前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
数据智能老司机14 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机15 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机15 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机15 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构