深度学习毕设思路--yolov5的使用方法

1. 安装依赖项

确保你已经安装了以下依赖项:

pip install -U -r requirements.txt

2. 数据准备

确保你有一个包含训练图像和相应标签的数据集。YOLOv5要求标签文件的格式为 YOLO 格式。

3. 训练模型

使用以下命令进行模型训练:

python train.py --img-size 640 --batch-size 16 --epochs 50 --data your_data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt

  • --img-size: 图像尺寸
  • --batch-size: 批处理大小
  • --epochs: 训练周期数
  • --data: 数据集配置文件(包含类别信息、训练集和验证集的路径等)
  • --cfg: 模型配置文件
  • --weights: 预训练权重路径(可选)
4. 推理(检测)

使用训练好的模型进行目标检测:

python detect.py --weights runs/train/exp/weights/best.pt --img-size 640 --conf 0.4 --source your_image_or_video_path

  • --weights: 训练好的权重路径
  • --img-size: 推理时的图像尺寸
  • --conf: 置信度阈值
  • --source: 待检测的图像或视频路径
5. 模型评估

使用以下命令评估模型性能:

python test.py --weights runs/train/exp/weights/best.pt --img-size 640 --data your_data.yaml

6. 导出模型

导出模型以在其他平台上使用:

python export.py --weights runs/train/exp/weights/best.pt --img-size 640 --batch-size 1

这只是一个基本的使用指南,实际应用可能需要根据你的需求进行调整。确保查看YOLOv5的官方文档以获取更详细的信息和更新。

相关推荐
悟道心2 分钟前
9. 自然语言处理NLP - T5
人工智能·自然语言处理
拉普拉斯妖1083 分钟前
DAY45 Tensorboard使用介绍
人工智能·深度学习
sunfove3 分钟前
上帝掷骰子的规则:马尔科夫链从数学原理到AI应用解析
人工智能
国冶机电安装7 分钟前
噪声污染防治工程:让城市、工厂与生活回归安静的系统解决方案
人工智能
星纵物联8 分钟前
中建八局低碳技术实验室建设与办公大楼智能化改造
人工智能·物联网·lorawan·传感器·绿色建筑
艾莉丝努力练剑12 分钟前
【QT】环境搭建收尾:认识Qt Creator
运维·开发语言·c++·人工智能·qt·qt creator·qt5
OpenCSG14 分钟前
AgenticOps x AgenticHub:把企业 AI 从“能用”做成“可管、可控、可衡量”的闭环打法
人工智能
enjoy编程15 分钟前
Spring-AI 脱离 IDE 的束缚:OpenCode 让 AI 开发回归终端本源
人工智能·spring·ai·claude·gemini·claude code·opencode
码农三叔15 分钟前
(8-3-02)自动驾驶中的无地图环境路径探索:D* Lite路径规划系统(2)
人工智能·python·机器人·自动驾驶·路径规划·d star lite
一条闲鱼_mytube17 分钟前
智能体设计模式 - 核心精华
人工智能·设计模式