深度学习毕设思路--yolov5的使用方法

1. 安装依赖项

确保你已经安装了以下依赖项:

pip install -U -r requirements.txt

2. 数据准备

确保你有一个包含训练图像和相应标签的数据集。YOLOv5要求标签文件的格式为 YOLO 格式。

3. 训练模型

使用以下命令进行模型训练:

python train.py --img-size 640 --batch-size 16 --epochs 50 --data your_data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt

  • --img-size: 图像尺寸
  • --batch-size: 批处理大小
  • --epochs: 训练周期数
  • --data: 数据集配置文件(包含类别信息、训练集和验证集的路径等)
  • --cfg: 模型配置文件
  • --weights: 预训练权重路径(可选)
4. 推理(检测)

使用训练好的模型进行目标检测:

python detect.py --weights runs/train/exp/weights/best.pt --img-size 640 --conf 0.4 --source your_image_or_video_path

  • --weights: 训练好的权重路径
  • --img-size: 推理时的图像尺寸
  • --conf: 置信度阈值
  • --source: 待检测的图像或视频路径
5. 模型评估

使用以下命令评估模型性能:

python test.py --weights runs/train/exp/weights/best.pt --img-size 640 --data your_data.yaml

6. 导出模型

导出模型以在其他平台上使用:

python export.py --weights runs/train/exp/weights/best.pt --img-size 640 --batch-size 1

这只是一个基本的使用指南,实际应用可能需要根据你的需求进行调整。确保查看YOLOv5的官方文档以获取更详细的信息和更新。

相关推荐
小oo呆4 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar4 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle4 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术4 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl5 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰5 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile5 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
小白白搭建5 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能
Jamence5 小时前
多模态大语言模型arxiv论文略读(三十九)
人工智能·语言模型·自然语言处理
ai大模型木子5 小时前
嵌入模型(Embedding Models)原理详解:从Word2Vec到BERT的技术演进
人工智能·自然语言处理·bert·embedding·word2vec·ai大模型·大模型资料