深度学习毕设思路--yolov5的使用方法

1. 安装依赖项

确保你已经安装了以下依赖项:

pip install -U -r requirements.txt

2. 数据准备

确保你有一个包含训练图像和相应标签的数据集。YOLOv5要求标签文件的格式为 YOLO 格式。

3. 训练模型

使用以下命令进行模型训练:

python train.py --img-size 640 --batch-size 16 --epochs 50 --data your_data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt

  • --img-size: 图像尺寸
  • --batch-size: 批处理大小
  • --epochs: 训练周期数
  • --data: 数据集配置文件(包含类别信息、训练集和验证集的路径等)
  • --cfg: 模型配置文件
  • --weights: 预训练权重路径(可选)
4. 推理(检测)

使用训练好的模型进行目标检测:

python detect.py --weights runs/train/exp/weights/best.pt --img-size 640 --conf 0.4 --source your_image_or_video_path

  • --weights: 训练好的权重路径
  • --img-size: 推理时的图像尺寸
  • --conf: 置信度阈值
  • --source: 待检测的图像或视频路径
5. 模型评估

使用以下命令评估模型性能:

python test.py --weights runs/train/exp/weights/best.pt --img-size 640 --data your_data.yaml

6. 导出模型

导出模型以在其他平台上使用:

python export.py --weights runs/train/exp/weights/best.pt --img-size 640 --batch-size 1

这只是一个基本的使用指南,实际应用可能需要根据你的需求进行调整。确保查看YOLOv5的官方文档以获取更详细的信息和更新。

相关推荐
Jouham几秒前
中小微企业AI获客痛点解析:瞬维智能如何用“自动化+精准度”破局
大数据·人工智能·自动化
得一录1 分钟前
AI面试·中档题
人工智能
文艺倾年10 分钟前
【源码精讲+简历包装】LeetcodeRunner—手搓调试器轮子(20W字-下)
java·开发语言·人工智能·语言模型·自然语言处理·大模型·免训练
EchoMind-Henry13 分钟前
EchoMindBot:不只是聊天工具,而是你的 AI 超级智能终端
人工智能
技术传感器16 分钟前
赋能智慧空间:看本体论如何破解城市更新运营难题
人工智能·深度学习·架构
七夜zippoe21 分钟前
TensorFlow 2.x深度实战:从Keras API到自定义训练循环
人工智能·python·tensorflow·keras
冬奇Lab23 分钟前
Agent 系统详解:从使用到自定义开发
人工智能·ai编程·claude
冬奇Lab28 分钟前
一天一个开源项目(第24篇):OpenClawInstaller - 一键部署私人 AI 助手 OpenClaw
人工智能·开源·资讯
菜鸟小芯36 分钟前
从“会聊天”到“能做事”:AI Agent(AI 智能体)的技术革命与落地实践
大数据·人工智能
龙山云仓39 分钟前
No155:AI中国故事-对话宋应星——天工开物与AI造物:格物穷理与经世致用
大数据·人工智能·深度学习