「NLP主题分析」LDA隐含狄利克雷分布(Latent Dirichlet Allocation)

是基于贝叶斯思想无监督的聚类算法,广泛用于文本聚类,文本分析,文本关键词等场景。LDA主题模型主要用于推测文档的主题分布,可以将文档集中每篇文档的主题以概率分布的形式给出根据主题进行主题聚类或文本分类。

LDA主题模型不关心文档中单词的顺序,通常使用词袋特征(bag-of-word feature)来代表文档。

-先了解LDA的生成模型,LDA认为一篇文章是怎么形成的呢?

LDA模型认为主题可以由一个词汇分布来表示,而文章可以由主题分布来表示。

**主题分析模型(Topic Model)**是以非监督学习的方式对文档的隐含语义结构进行统计聚类,用以挖掘文本蕴含的语义结构的技术。隐含狄利克雷分布(Latent Dirichlet Allocation, 简称 LDA)是常用的主题模型计算方法。

e.g.200 维主题模型(定义了200多个主题编号,当前文本段落落入改主题的概率为 XXX),并展示出了关系最密切的主题和代表性词汇。主题分析可用于文本聚类、关联文本推荐等应用。其中主题编号是指主题的抽象表达,因为其语义内涵不能直接用字词来简单定义和命名,所以用编号来表示。

主题词是主题的具象描述。概率值是指这段文本属于某个主题的概率值,概率值越高,文本的内容越倾向于对应的主题。

Reference:

比如有两个主题,美食和美妆。LDA说两个主题可以由词汇分布表示,他们分别是:

{面包:0.4,火锅:0.5,眉笔:0.03,腮红:0.07}

{眉笔:0.4,腮红:0.5,面包:0.03,火锅:0.07}

同样,对于两篇文章,LDA认为文章可以由主题分布这么表示:

《美妆日记》{美妆:0.8,美食:0.1,其他:0.1}

《美食探索》{美食:0.8,美妆:0.1,其他:0.1}

所以想要生成一篇文章,可以先以一定的概率选取上述某个主题,再以一定的概率选取那个主题下的某个单词,不断重复这两步就可以生成最终文章。

相关推荐
zy_destiny5 分钟前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
2501_941837268 分钟前
蘑菇可食用性分类识别_YOLO11分割模型实现与优化_1
人工智能·数据挖掘
2501_941837268 分钟前
基于YOLO11-Aux改进的圣女果目标检测实现
人工智能·目标检测·计算机视觉
莫有杯子的龙潭峡谷16 分钟前
在 Windows 系统上安装 OpenClaw
人工智能·node.js·安装教程·openclaw
Funny_AI_LAB18 分钟前
AI Agent最新重磅综述:迈向高效智能体,记忆、工具学习和规划综述
人工智能·学习·算法·语言模型·agi
zhangshuang-peta31 分钟前
超越Composio:ContextForge与Peta作为集成平台的替代方案
人工智能·ai agent·mcp·peta
power 雀儿33 分钟前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
X54先生(人文科技)34 分钟前
元创力开源项目介绍
人工智能·架构·零知识证明
(; ̄ェ ̄)。34 分钟前
机器学习入门(十八)特征降维
人工智能·机器学习
pp起床37 分钟前
Gen_AI 第三课 大模型内部原理
人工智能