一种用于心音分类的轻量级1D-CNN+DWT网络

这是由National Institute of Technology Rourkela, Central University of Rajasthan发布在2022 ICETCI的论文,利用离散小波变换(DWT)得到的多分辨率域特征对1D-CNN模型进行心音分类训练。

预处理& DWT

由于FHS和各种病理声的频率范围在500hz以下[5],因此将信号从8khz降采样到1khz。信号幅度归一化如下:

数据集里面的信号的长度从1.15秒到3.99秒。经过观察,发现每个样本大约由三个心动周期组成。在识别信号的开始和偏移后,将信号调整为相等长度(2800个样本)。最终得到了归一化后的信号:

再使用DWT将信号分解为低频和高频分量。对高频分量进行下采样,再分解为低频分量和高频分量。

心音信号以coif5为母小波分解为5级,得到的5个详细电平系数和近似电平信号如图所示。

然后排列成一维数组,长度为2942,送入1D-CNN。

1D-CNN

CNN模型由5层组成,1个输入层,2个卷积和池化层,1个全连接(FC)层和1个输出层(softmax)。

使用50个epoch,每个epoch 9次迭代,总共迭代450次,学习率为0.01。批大小为64。

结果

使用Yaseen GitHub数据集,该数据集有1000个样本,每200个样本分为5类,包括主动脉瓣狭窄(AS)、二尖瓣反流(MR)、二尖瓣狭窄(MS)、二尖瓣脱垂(MVP)和正常(N)。每个样本的采样频率设置为1khz,采样长度为2800个样本。完整数据集随机分为训练(70%)和测试(30%)数据集。

测试集混淆矩阵如下:

可以看到该模型能有效地对所有类别进行分类。5个类的F-score在98.18%以上。MR和N的F-score都在99%以上。

除a类的准确率为97.73%外,其余4个指标的准确率均高于98%。这5个类别都达到了高灵敏度(>98%)和高特异性(>99%)。

SOTA比较

使用该方法获得了最高的准确率(98.9%)。

论文地址:

https://avoid.overfit.cn/post/de8b9cc055a34f2fb9fa3c1e509e169b

相关推荐
昵称是6硬币20 分钟前
YOLO26论文精读(逐段解析)
人工智能·深度学习·yolo·目标检测·计算机视觉·yolo26
wwlsm_zql3 小时前
「赤兔」Chitu 框架深度解读(十四):核心算子优化
人工智能·1024程序员节
小冷爱读书3 小时前
F-INR: Functional Tensor Decomposition for Implicit Neural Representations
深度学习·inr·函数张量分解
浣熊-论文指导5 小时前
聚类与Transformer融合的六大创新方向
论文阅读·深度学习·机器学习·transformer·聚类
AKAMAI5 小时前
Fermyon推出全球最快边缘计算平台:WebAssembly先驱携手Akamai云驱动无服务器技术新浪潮
人工智能·云计算·边缘计算
云雾J视界5 小时前
TMS320C6000 VLIW架构并行编程实战:加速AI边缘计算推理性能
人工智能·架构·边缘计算·dsp·vliw·tms320c6000
想ai抽6 小时前
基于AI Agent的数据资产自动化治理实验
人工智能·langchain·embedding
小马过河R6 小时前
AIGC视频生成之Deepseek、百度妙笔组合实战小案例
人工智能·深度学习·计算机视觉·百度·aigc
june-Dai Yi7 小时前
免费的大语言模型API接口
人工智能·语言模型·自然语言处理·chatgpt·api接口
东经116度7 小时前
生成对抗网络(GAN)
深度学习·gan·模式崩塌