一种用于心音分类的轻量级1D-CNN+DWT网络

这是由National Institute of Technology Rourkela, Central University of Rajasthan发布在2022 ICETCI的论文,利用离散小波变换(DWT)得到的多分辨率域特征对1D-CNN模型进行心音分类训练。

预处理& DWT

由于FHS和各种病理声的频率范围在500hz以下[5],因此将信号从8khz降采样到1khz。信号幅度归一化如下:

数据集里面的信号的长度从1.15秒到3.99秒。经过观察,发现每个样本大约由三个心动周期组成。在识别信号的开始和偏移后,将信号调整为相等长度(2800个样本)。最终得到了归一化后的信号:

再使用DWT将信号分解为低频和高频分量。对高频分量进行下采样,再分解为低频分量和高频分量。

心音信号以coif5为母小波分解为5级,得到的5个详细电平系数和近似电平信号如图所示。

然后排列成一维数组,长度为2942,送入1D-CNN。

1D-CNN

CNN模型由5层组成,1个输入层,2个卷积和池化层,1个全连接(FC)层和1个输出层(softmax)。

使用50个epoch,每个epoch 9次迭代,总共迭代450次,学习率为0.01。批大小为64。

结果

使用Yaseen GitHub数据集,该数据集有1000个样本,每200个样本分为5类,包括主动脉瓣狭窄(AS)、二尖瓣反流(MR)、二尖瓣狭窄(MS)、二尖瓣脱垂(MVP)和正常(N)。每个样本的采样频率设置为1khz,采样长度为2800个样本。完整数据集随机分为训练(70%)和测试(30%)数据集。

测试集混淆矩阵如下:

可以看到该模型能有效地对所有类别进行分类。5个类的F-score在98.18%以上。MR和N的F-score都在99%以上。

除a类的准确率为97.73%外,其余4个指标的准确率均高于98%。这5个类别都达到了高灵敏度(>98%)和高特异性(>99%)。

SOTA比较

使用该方法获得了最高的准确率(98.9%)。

论文地址:

https://avoid.overfit.cn/post/de8b9cc055a34f2fb9fa3c1e509e169b

相关推荐
万事ONES14 分钟前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr678924 分钟前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者24 分钟前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he29 分钟前
esp32 arduino环境的搭建
人工智能
SmartBrain38 分钟前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia143 分钟前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机1 小时前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
不惑_1 小时前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
OpenCSG2 小时前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌2 小时前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能