一种用于心音分类的轻量级1D-CNN+DWT网络

这是由National Institute of Technology Rourkela, Central University of Rajasthan发布在2022 ICETCI的论文,利用离散小波变换(DWT)得到的多分辨率域特征对1D-CNN模型进行心音分类训练。

预处理& DWT

由于FHS和各种病理声的频率范围在500hz以下[5],因此将信号从8khz降采样到1khz。信号幅度归一化如下:

数据集里面的信号的长度从1.15秒到3.99秒。经过观察,发现每个样本大约由三个心动周期组成。在识别信号的开始和偏移后,将信号调整为相等长度(2800个样本)。最终得到了归一化后的信号:

再使用DWT将信号分解为低频和高频分量。对高频分量进行下采样,再分解为低频分量和高频分量。

心音信号以coif5为母小波分解为5级,得到的5个详细电平系数和近似电平信号如图所示。

然后排列成一维数组,长度为2942,送入1D-CNN。

1D-CNN

CNN模型由5层组成,1个输入层,2个卷积和池化层,1个全连接(FC)层和1个输出层(softmax)。

使用50个epoch,每个epoch 9次迭代,总共迭代450次,学习率为0.01。批大小为64。

结果

使用Yaseen GitHub数据集,该数据集有1000个样本,每200个样本分为5类,包括主动脉瓣狭窄(AS)、二尖瓣反流(MR)、二尖瓣狭窄(MS)、二尖瓣脱垂(MVP)和正常(N)。每个样本的采样频率设置为1khz,采样长度为2800个样本。完整数据集随机分为训练(70%)和测试(30%)数据集。

测试集混淆矩阵如下:

可以看到该模型能有效地对所有类别进行分类。5个类的F-score在98.18%以上。MR和N的F-score都在99%以上。

除a类的准确率为97.73%外,其余4个指标的准确率均高于98%。这5个类别都达到了高灵敏度(>98%)和高特异性(>99%)。

SOTA比较

使用该方法获得了最高的准确率(98.9%)。

论文地址:

https://avoid.overfit.cn/post/de8b9cc055a34f2fb9fa3c1e509e169b

相关推荐
艾派森1 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11233 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子8 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing20 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
Chef_Chen1 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
学习前端的小z2 小时前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc