利用svm进行模型训练

一、步骤

1、将文本数据转换为特征向量 : tf-idf

2、使用这些特征向量训练SVM模型

二、代码

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

def preprocess_data(data):
    texts, labels = zip(*data)
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(texts).todense()
    return X, labels, vectorizer

def print_sorted_feature_weights(X, vectorizer):
    feature_name = vectorizer.get_feature_names_out()
    for i, doc in enumerate(X):
        nonzero_idx = doc.nonzero()[1]
        dic = {idx: doc[0, idx] for idx in nonzero_idx}
        sorted_dic = dict(sorted(dic.items(), key=lambda x: x[1], reverse=True))
        data_ = {feature_name[k]: v for k, v in sorted_dic.items()}
        print(data_)

def train_and_evaluate_model(X_train, X_test, y_train, y_test):
    svm_classifier = SVC(kernel='linear', random_state=42)
    svm_classifier.fit(X_train, y_train)
    y_pred = svm_classifier.predict(X_test)
    return y_test, y_pred

def main():
    # 示例数据集
    data = [
        ("I love this product!", 1),
        ("This is terrible.", 0),
        ("The movie was fantastic.", 1),
        ("I dislike this feature.", 0),
        ("Amazing experience!", 1),
        ("Not recommended.", 0)
    ]

    # 数据预处理
    X, labels, vectorizer = preprocess_data(data)

    # 打印排序后的特征权重
    print_sorted_feature_weights(X, vectorizer)

    # 将数据集拆分为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

    # 训练和评估模型
    y_true, y_pred = train_and_evaluate_model(X_train, X_test, y_train, y_test)

    # 测试集是哪些
    print_sorted_feature_weights(X_test,vectorizer)

    # 评估模型性能
    accuracy = accuracy_score(y_true, y_pred)
    report = classification_report(y_true, y_pred)

    # 打印模型性能指标
    print(f"Accuracy: {accuracy}")
    print("Classification Report:\n", report)

if __name__ == "__main__":
    main()

三、结果

​​​​​​​
对应着:test_data= [("I love this product!", 1),("This is terrible.", 0)]

​​​​​​​

相关推荐
B站_计算机毕业设计之家14 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
Wei&Yan25 分钟前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
喵叔哟1 小时前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
团子的二进制世界1 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
白日做梦Q1 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
吃杠碰小鸡1 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨1 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long3161 小时前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼1 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
熊文豪1 小时前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann