利用svm进行模型训练

一、步骤

1、将文本数据转换为特征向量 : tf-idf

2、使用这些特征向量训练SVM模型

二、代码

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report

def preprocess_data(data):
    texts, labels = zip(*data)
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(texts).todense()
    return X, labels, vectorizer

def print_sorted_feature_weights(X, vectorizer):
    feature_name = vectorizer.get_feature_names_out()
    for i, doc in enumerate(X):
        nonzero_idx = doc.nonzero()[1]
        dic = {idx: doc[0, idx] for idx in nonzero_idx}
        sorted_dic = dict(sorted(dic.items(), key=lambda x: x[1], reverse=True))
        data_ = {feature_name[k]: v for k, v in sorted_dic.items()}
        print(data_)

def train_and_evaluate_model(X_train, X_test, y_train, y_test):
    svm_classifier = SVC(kernel='linear', random_state=42)
    svm_classifier.fit(X_train, y_train)
    y_pred = svm_classifier.predict(X_test)
    return y_test, y_pred

def main():
    # 示例数据集
    data = [
        ("I love this product!", 1),
        ("This is terrible.", 0),
        ("The movie was fantastic.", 1),
        ("I dislike this feature.", 0),
        ("Amazing experience!", 1),
        ("Not recommended.", 0)
    ]

    # 数据预处理
    X, labels, vectorizer = preprocess_data(data)

    # 打印排序后的特征权重
    print_sorted_feature_weights(X, vectorizer)

    # 将数据集拆分为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

    # 训练和评估模型
    y_true, y_pred = train_and_evaluate_model(X_train, X_test, y_train, y_test)

    # 测试集是哪些
    print_sorted_feature_weights(X_test,vectorizer)

    # 评估模型性能
    accuracy = accuracy_score(y_true, y_pred)
    report = classification_report(y_true, y_pred)

    # 打印模型性能指标
    print(f"Accuracy: {accuracy}")
    print("Classification Report:\n", report)

if __name__ == "__main__":
    main()

三、结果

​​​​​​​
对应着:test_data= [("I love this product!", 1),("This is terrible.", 0)]

​​​​​​​

相关推荐
Lester_11011 小时前
嵌入式学习笔记 - 用泰勒公式解决 tanh函数
笔记·学习·算法
无限进步_1 小时前
C语言字符串连接实现详解:掌握自定义strcat函数
c语言·开发语言·c++·后端·算法·visual studio
凤年徐1 小时前
HashMap 的哈希算法与冲突解决:深入 Rust 的高性能键值存储
算法·rust·哈希算法
J_Xiong01172 小时前
【VLNs篇】11:Dynam3D: 动态分层3D令牌赋能视觉语言导航中的VLM
人工智能·算法·3d
弈风千秋万古愁2 小时前
【PID】连续PID和数字PID chapter1(补充) 学习笔记
笔记·学习·算法·matlab
天选之女wow2 小时前
【代码随想录算法训练营——Day52】图论——101.孤岛的总面积、102.沉没孤岛、103.水流问题、104.建造最大岛屿
算法·深度优先·图论
碧海银沙音频科技研究院2 小时前
i2s封装成自己定义8路音频数据发送方法
arm开发·人工智能·深度学习·算法·音视频
做科研的周师兄2 小时前
【机器学习入门】9.2:感知机的工作原理 —— 从模型结构到实战分类
人工智能·算法·机器学习·分类·数据挖掘
不去幼儿园2 小时前
【启发式算法】狼群算法(Wolf Pack Algorithm, WPA)算法详细介绍(Python)
python·算法·启发式算法·任务分配·集群智能
做科研的周师兄3 小时前
【机器学习入门】9.2:感知机 Python 实践代码模板(苹果香蕉分类任务适配)
人工智能·python·学习·机器学习·分类·数据挖掘·numpy