运筹学经典问题(二):最短路问题

问题描述

给定一个图(有向图或无向图) G = ( V , E ) G = (V, E) G=(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij(距离或者运输成本等),给定一个起点 u u u和一个终点 z z z,最段路问题就是寻找一条从 s s s出发,到达 z z z的距离最短或者成本最低的路径。

数学建模

定义:
I I I:点的集合;
o u t ( i ) out(i) out(i):离开点 i i i边的集合;
i n ( i ) in(i) in(i):进入点 i i i边的集合;
x e x_e xe:是否选择 e e e这条边,0-1变量;
m i n ∑ e ∈ E x e c e s . t . ∑ e ∈ o u t ( i ) x e − ∑ e ∈ i n ( i ) x e = { 1 , i = u − 1 , i = z 0 , e l s e min \sum_{e \in E}x_ec_e \\ s.t. \sum_{e \in out(i)}x_e - \sum_{e \in in(i)}x_e= \begin{cases} 1, i=u \\ -1, i=z \\ 0, else \end{cases} mine∈E∑xeces.t.e∈out(i)∑xe−e∈in(i)∑xe=⎩ ⎨ ⎧1,i=u−1,i=z0,else

上述模型优化目标为最小化路径距离,约束为进出平衡(分了3种点的类型去写约束:始发点只出不进、目的点只进不出、其他点进等于出)。

整数最优解特性

即使把变量 x e x_{e} xe松弛成 0 ≤ x e ≤ 1 0 \leq x_e \leq1 0≤xe≤1,原问题变成线性规划,该问题仍然存在整数最优解。

模型求解

调用求解器求解即可。

  • 后面补充代码。

参考资料

  1. 最短路径问题.
  2. 运筹优化常用算法、模型及案例实战:Python+Java 实现. 刘兴禄,熊望祺,臧永森,段宏达,曾文佳,陈伟坚.
相关推荐
优雅的潮叭4 小时前
c++ 学习笔记之 shared_ptr
c++·笔记·学习
多米Domi0114 小时前
0x3f第33天复习 (16;45-18:00)
数据结构·python·算法·leetcode·链表
claider4 小时前
Vim User Manual 阅读笔记 usr_08.txt Splitting windows 窗口分割
笔记·编辑器·vim
am心4 小时前
学习笔记-用户下单
笔记·学习
罗湖老棍子4 小时前
【例4-11】最短网络(agrinet)(信息学奥赛一本通- P1350)
算法·图论·kruskal·prim
方圆工作室4 小时前
【C语言图形学】用*号绘制完美圆的三种算法详解与实现【AI】
c语言·开发语言·算法
Lips6115 小时前
2026.1.16力扣刷题
数据结构·算法·leetcode
kylezhao20195 小时前
C# 文件的输入与输出(I/O)详解
java·算法·c#
CodeByV6 小时前
【算法题】堆
算法
kaikaile19956 小时前
A星算法避开障碍物寻找最优路径(MATLAB实现)
数据结构·算法·matlab