运筹学经典问题(二):最短路问题

问题描述

给定一个图(有向图或无向图) G = ( V , E ) G = (V, E) G=(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij(距离或者运输成本等),给定一个起点 u u u和一个终点 z z z,最段路问题就是寻找一条从 s s s出发,到达 z z z的距离最短或者成本最低的路径。

数学建模

定义:
I I I:点的集合;
o u t ( i ) out(i) out(i):离开点 i i i边的集合;
i n ( i ) in(i) in(i):进入点 i i i边的集合;
x e x_e xe:是否选择 e e e这条边,0-1变量;
m i n ∑ e ∈ E x e c e s . t . ∑ e ∈ o u t ( i ) x e − ∑ e ∈ i n ( i ) x e = { 1 , i = u − 1 , i = z 0 , e l s e min \sum_{e \in E}x_ec_e \\ s.t. \sum_{e \in out(i)}x_e - \sum_{e \in in(i)}x_e= \begin{cases} 1, i=u \\ -1, i=z \\ 0, else \end{cases} mine∈E∑xeces.t.e∈out(i)∑xe−e∈in(i)∑xe=⎩ ⎨ ⎧1,i=u−1,i=z0,else

上述模型优化目标为最小化路径距离,约束为进出平衡(分了3种点的类型去写约束:始发点只出不进、目的点只进不出、其他点进等于出)。

整数最优解特性

即使把变量 x e x_{e} xe松弛成 0 ≤ x e ≤ 1 0 \leq x_e \leq1 0≤xe≤1,原问题变成线性规划,该问题仍然存在整数最优解。

模型求解

调用求解器求解即可。

  • 后面补充代码。

参考资料

  1. 最短路径问题.
  2. 运筹优化常用算法、模型及案例实战:Python+Java 实现. 刘兴禄,熊望祺,臧永森,段宏达,曾文佳,陈伟坚.
相关推荐
满分观察网友z8 分钟前
开发者的“右”眼:一个树问题如何拯救我的UI设计(199. 二叉树的右视图)
算法
森焱森1 小时前
无人机三轴稳定化控制(1)____飞机的稳定控制逻辑
c语言·单片机·算法·无人机
循环过三天1 小时前
3-1 PID算法改进(积分部分)
笔记·stm32·单片机·学习·算法·pid
闪电麦坤952 小时前
数据结构:二维数组(2D Arrays)
数据结构·算法
之歆2 小时前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习
凌肖战2 小时前
力扣网C语言编程题:快慢指针来解决 “寻找重复数”
c语言·算法·leetcode
埃菲尔铁塔_CV算法2 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
NAGNIP3 小时前
一文搞懂FlashAttention怎么提升速度的?
人工智能·算法
DKPT3 小时前
Java组合模式实现方式与测试方法
java·笔记·学习·设计模式·组合模式