运筹学经典问题(二):最短路问题

问题描述

给定一个图(有向图或无向图) G = ( V , E ) G = (V, E) G=(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij(距离或者运输成本等),给定一个起点 u u u和一个终点 z z z,最段路问题就是寻找一条从 s s s出发,到达 z z z的距离最短或者成本最低的路径。

数学建模

定义:
I I I:点的集合;
o u t ( i ) out(i) out(i):离开点 i i i边的集合;
i n ( i ) in(i) in(i):进入点 i i i边的集合;
x e x_e xe:是否选择 e e e这条边,0-1变量;
m i n ∑ e ∈ E x e c e s . t . ∑ e ∈ o u t ( i ) x e − ∑ e ∈ i n ( i ) x e = { 1 , i = u − 1 , i = z 0 , e l s e min \sum_{e \in E}x_ec_e \\ s.t. \sum_{e \in out(i)}x_e - \sum_{e \in in(i)}x_e= \begin{cases} 1, i=u \\ -1, i=z \\ 0, else \end{cases} mine∈E∑xeces.t.e∈out(i)∑xe−e∈in(i)∑xe=⎩ ⎨ ⎧1,i=u−1,i=z0,else

上述模型优化目标为最小化路径距离,约束为进出平衡(分了3种点的类型去写约束:始发点只出不进、目的点只进不出、其他点进等于出)。

整数最优解特性

即使把变量 x e x_{e} xe松弛成 0 ≤ x e ≤ 1 0 \leq x_e \leq1 0≤xe≤1,原问题变成线性规划,该问题仍然存在整数最优解。

模型求解

调用求解器求解即可。

  • 后面补充代码。

参考资料

  1. 最短路径问题.
  2. 运筹优化常用算法、模型及案例实战:Python+Java 实现. 刘兴禄,熊望祺,臧永森,段宏达,曾文佳,陈伟坚.
相关推荐
轻抚酸~4 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
Yue丶越6 小时前
【C语言】字符函数和字符串函数
c语言·开发语言·算法
小白程序员成长日记7 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展
有一个好名字7 小时前
LeetCode跳跃游戏:思路与题解全解析
算法·leetcode·游戏
Yawesh_best7 小时前
告别系统壁垒!WSL+cpolar 让跨平台开发效率翻倍
运维·服务器·数据库·笔记·web安全
AndrewHZ8 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
蓝牙先生8 小时前
简易TCP C/S通信
c语言·tcp/ip·算法
Ccjf酷儿9 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y10 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面10 小时前
(笔记)自定义 systemd 服务
笔记