运筹学经典问题(二):最短路问题

问题描述

给定一个图(有向图或无向图) G = ( V , E ) G = (V, E) G=(V,E), V V V是图中点的集合, E E E是图中边的集合,图中每条边 ( i , j ) ∈ E (i, j) \in E (i,j)∈E都对应一个权重 c i j c_{ij} cij(距离或者运输成本等),给定一个起点 u u u和一个终点 z z z,最段路问题就是寻找一条从 s s s出发,到达 z z z的距离最短或者成本最低的路径。

数学建模

定义:
I I I:点的集合;
o u t ( i ) out(i) out(i):离开点 i i i边的集合;
i n ( i ) in(i) in(i):进入点 i i i边的集合;
x e x_e xe:是否选择 e e e这条边,0-1变量;
m i n ∑ e ∈ E x e c e s . t . ∑ e ∈ o u t ( i ) x e − ∑ e ∈ i n ( i ) x e = { 1 , i = u − 1 , i = z 0 , e l s e min \sum_{e \in E}x_ec_e \\ s.t. \sum_{e \in out(i)}x_e - \sum_{e \in in(i)}x_e= \begin{cases} 1, i=u \\ -1, i=z \\ 0, else \end{cases} mine∈E∑xeces.t.e∈out(i)∑xe−e∈in(i)∑xe=⎩ ⎨ ⎧1,i=u−1,i=z0,else

上述模型优化目标为最小化路径距离,约束为进出平衡(分了3种点的类型去写约束:始发点只出不进、目的点只进不出、其他点进等于出)。

整数最优解特性

即使把变量 x e x_{e} xe松弛成 0 ≤ x e ≤ 1 0 \leq x_e \leq1 0≤xe≤1,原问题变成线性规划,该问题仍然存在整数最优解。

模型求解

调用求解器求解即可。

  • 后面补充代码。

参考资料

  1. 最短路径问题.
  2. 运筹优化常用算法、模型及案例实战:Python+Java 实现. 刘兴禄,熊望祺,臧永森,段宏达,曾文佳,陈伟坚.
相关推荐
lpfasd12335 分钟前
辞别2025:在不确定中锚定确定,在喧嚣里守护清醒
笔记
长安er8 小时前
LeetCode215/347/295 堆相关理论与题目
java·数据结构·算法·leetcode·
元亓亓亓8 小时前
LeetCode热题100--62. 不同路径--中等
算法·leetcode·职场和发展
小白菜又菜9 小时前
Leetcode 1925. Count Square Sum Triples
算法·leetcode
登山人在路上10 小时前
Nginx三种会话保持算法对比
算法·哈希算法·散列表
写代码的小球10 小时前
C++计算器(学生版)
c++·算法
AI科技星10 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
Fuly102411 小时前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
航Hang*11 小时前
Photoshop 图形与图像处理技术——第8章:图像的色彩与色彩调整和图像的输出与优化
图像处理·笔记·ui·photoshop
Xの哲學11 小时前
Linux网卡注册流程深度解析: 从硬件探测到网络栈
linux·服务器·网络·算法·边缘计算