代码随想Day39 | 62.不同路径、63. 不同路径 II

62.不同路径

每次向右或者向下走两个选择,定义dp数组dp[i][j] 为到达索引ij的路径和,状态转移公式为

dp[i][j]=dp[i-1][j]+dp[i][j-1],初始状态的第一行和第一列为1,从左上到右下开始遍历即可。详细代码如下:

cpp 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>>dp (m,vector<int>(n,1));
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];

    }
};

为了优化空间复杂度,可以用一个一维数组,因为一定是先更新左边的值再更新右边的值。

详细代码如下:

cpp 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int>dp (n,1);
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[j]+=dp[j-1]; //当前dp为从上方路径来,dp[j-1]为从左方来
            }
        }
        return dp[n-1];
    }
};

63. 不同路径 II

这道题和上一道思路一样,但是这道有障碍物,需要注意有障碍物的索引,到达该处的路径和为0,根据这个条件,增加处理逻辑即可,整体的转移方程还是

详细代码如下:

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty()) return 0;
        vector<vector<int>>dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0));
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        for(int i=0;i<m;i++)
        {
            if(obstacleGrid[i][0]==1||i>0&&dp[i-1][0]==0) dp[i][0]=0;
            else dp[i][0] = 1;
        }
        for(int j=1;j<n;j++)
        {
            if(obstacleGrid[0][j]==1||dp[0][j-1]==0) dp[0][j]=0;
            else dp[0][j] = 1;
        }
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                if(obstacleGrid[i][j]==1) dp[i][j]=0;
                else dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];

    }
};

感觉这道题的优化空间版本细节有点多,但还是附上代码:

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid.empty()) return 0;
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<int>dp (n,0);
        for(int j=0;j<n;j++)
        {
            if(obstacleGrid[0][j]==1||j>0&&dp[j-1]==0) dp[j]=0;
            else dp[j] = 1;
        }
        for(int i=1;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                if(obstacleGrid[i][j]==1) dp[j]=0;
                else if(j>0) dp[j] = dp[j]+dp[j-1];
            }
        }
        return dp[n-1];

    }
};
相关推荐
wen__xvn1 分钟前
每日一题洛谷P8664 [蓝桥杯 2018 省 A] 付账问题c++
c++·职场和发展·蓝桥杯
手握风云-14 分钟前
优选算法的妙思之流:分治——快排专题
数据结构·算法
测试界茜茜17 分钟前
接口测试和功能测试的区别
自动化测试·软件测试·功能测试·程序人生·职场和发展
熬夜苦读学习22 分钟前
Linux进程信号
linux·c++·算法
白白糖25 分钟前
二叉树 递归
python·算法·力扣
jyyyx的算法博客36 分钟前
Leetcode 857 -- 贪心 | 数学
算法·leetcode·贪心·嗜血
ChoSeitaku44 分钟前
NO.64十六届蓝桥杯备战|基础算法-简单贪心|货仓选址|最大子段和|纪念品分组|排座椅|矩阵消除(C++)
算法·矩阵·蓝桥杯
l1n3x1 小时前
编译原理前端-词法分析
算法·编译原理
一只天蝎的晋升之路1 小时前
基础算法之:动态规划
算法·动态规划
KangkangLoveNLP1 小时前
手动实现一个迷你Llama:使用SentencePiece实现自己的tokenizer
人工智能·深度学习·学习·算法·transformer·llama