基于googlenet深度学习网络的中药材种类识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1深度学习基础

4.2GoogLeNet网络结构

[4.3 中药材种类识别算法流程](#4.3 中药材种类识别算法流程)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022A

3.部分核心程序

复制代码
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load gnet.mat% 载入预训练的GoogLeNet模型
% 使用训练好的模型进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Testing_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Testing_Dataset.Labels);
% 随机选择16张测试图像进行展示
index = randperm(numel(Resized_Testing_Dataset.Files), 20);
figure

for i = 1:20% 在子图中展示每张图像、预测标签和概率
    subplot(5,4,i)
    I = readimage(Testing_Dataset, index(i));% 读取图像
    imshow(I) % 显示图像
    label = Predicted_Label(index(i));% 预测标签
    title(string(label) + ", " + num2str(100*max(Probability(index(i), :)), 3) + "%");
end
93

4.算法理论概述

中药材种类识别是中药学领域的一项重要任务,对于保证中药的质量和疗效具有重要意义。近年来,深度学习技术在图像识别领域取得了显著进展,为中药材种类识别提供了新的解决方案。

4.1深度学习基础

深度学习是一种模拟人脑神经网络结构的机器学习算法,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。卷积神经网络(Convolutional Neural Network, CNN)是深度学习的代表算法之一,特别适用于处理图像数据。

4.2GoogLeNet网络结构

GoogLeNet是2014年ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军模型,以其高效的网络结构和优异的性能而著称。GoogLeNet采用了Inception模块,通过并行卷积、池化等操作,实现了多尺度输入的处理,提高了网络的特征提取能力。

4.3 中药材种类识别算法流程

基于GoogLeNet的中药材种类识别算法主要包括以下几个步骤:

数据预处理:对中药材图像进行预处理,包括图像大小归一化、去噪、增强等操作,以便于网络训练。

构建GoogLeNet网络:基于Inception模块构建GoogLeNet网络,设置网络参数。

网络训练:利用预处理后的中药材图像数据集对GoogLeNet网络进行训练,通过反向传播算法优化网络参数,使得网络能够学习到中药材图像的特征。

特征提取:利用训练好的GoogLeNet网络对中药材图像进行特征提取,得到图像的特征向量。

种类识别:基于提取的特征向量,利用分类器(如支持向量机、随机森林等)对中药材种类进行识别。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
咚咚王者34 分钟前
人工智能之核心技术 深度学习 第八章 数据预处理与增强
人工智能·深度学习
zy_destiny2 小时前
【工业场景】用YOLOv26实现4种输电线隐患检测
人工智能·深度学习·算法·yolo·机器学习·计算机视觉·输电线隐患识别
雍凉明月夜2 小时前
深度学习之目标检测yolo算法Ⅴ-YOLOv8
深度学习·yolo·目标检测
2501_941652772 小时前
改进YOLOv5-BiFPN-SDI实现牙齿龋齿检测与分类_深度学习_计算机视觉_原创
深度学习·yolo·分类
yong99902 小时前
基于势能原理的圆柱齿轮啮合刚度计算MATLAB程序实现
开发语言·matlab
zy_destiny3 小时前
【工业场景】用YOLOv26实现8种道路隐患检测
人工智能·深度学习·算法·yolo·机器学习·计算机视觉·目标跟踪
铁手飞鹰3 小时前
[深度学习]Vision Transformer
人工智能·pytorch·python·深度学习·transformer
weixin_395448913 小时前
average_weights.py
pytorch·python·深度学习
香芋Yu3 小时前
【深度学习教程——02_优化与正则(Optimization)】09_为什么Dropout能防止过拟合?正则化的本质
人工智能·深度学习
皮肤科大白3 小时前
超轻量SAM模型部署:ONNX量化与Transformer剪枝全攻略
深度学习·transformer