RealBasicVSR高清处理视频

autodl做了镜像:高清RealBasicVSR
首先在剪映将视频剪好导出,最多是720像素的,不然后面超分的时候会爆显存。剪映视频也最好是双数帧数结尾的,不然超分的时候单数图片会报错->RuntimeError: non-empty 3D or 4D input tensor expected but got ndim: 4
首先使用脚本把视频分割成图片
python 复制代码
import cv2
import os

# 视频文件所在目录
video_directory = r'D:\hc\dongtaibizhi\test'
# 获取目录中所有的mp4文件
video_files = [f for f in os.listdir(video_directory) if f.endswith('.mp4')]

for video_file in video_files:
    video_path = os.path.join(video_directory, video_file)

    # 创建以视频名命名的文件夹来保存图片
    output_folder = os.path.join(video_directory, os.path.splitext(video_file)[0])
    os.makedirs(output_folder, exist_ok=True)

    # 打开视频文件
    cap = cv2.VideoCapture(video_path)

    # 获取视频的原始帧率
    original_fps = int(cap.get(cv2.CAP_PROP_FPS))

    # 计算每秒需要提取的帧数
    frames_per_second = 30

    # 计算跳帧间隔
    frame_skip = max(1, original_fps // frames_per_second)

    # 初始化帧计数器
    frame_count = 0

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        if frame_count % frame_skip == 0:
        # 保存图片
            image_filename = os.path.join(output_folder, f'frame_{frame_count:04d}.jpg')
            cv2.imwrite(image_filename, frame)

        frame_count += 1

    # 释放视频对象
    cap.release()
    print(f'已成功保存 {video_file} 的图片到 {output_folder}')
比如说现在图片集都放在ss3720这个文件夹里,那么运行命令进行图片高清化
python 复制代码
python inference_realbasicvsr.py configs/realbasicvsr_x4.py checkpoints/RealBasicVSR_x4.pth data/ss3720 results/ss3720  --max_seq_len=2
超分后使用~/RealBasicVSR-master/results,下的脚本进行图片合成视频(要改脚本里的文件路径)
python 复制代码
python image2video.py
参考网址:https://blog.csdn.net/zhiweihongyan1/article/details/124645615
相关推荐
棒棒的皮皮6 小时前
【OpenCV】Python图像处理几何变换之翻转
图像处理·python·opencv·计算机视觉
无能者狂怒6 小时前
YOLO C++ Onnx Opencv项目配置指南
c++·opencv·yolo
劈星斩月7 小时前
OpenCV 学习9-灰度转黑白二值图像
opencv·转二值图像·threshold函数
CodeCraft Studio7 小时前
国产化PPT处理控件Spire.Presentation教程:使用Python将图片批量转换为PPT
python·opencv·powerpoint·ppt文档开发·ppt组件库·ppt api
Android系统攻城狮7 小时前
Android16音频之获取音频时间戳AudioTrack.getTimestamp:用法实例(一百三十九)
音视频·android16·音频进阶
具***710 小时前
基于STM32和FreeRTOS的智能家居设计之路
计算机视觉
Coding茶水间10 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
橙露11 小时前
二通道数显控制器:工业测控的“双管家”,视觉检测中的隐形助力
人工智能·计算机视觉·视觉检测
简鹿视频12 小时前
视频转mp4格式具体作步骤
ffmpeg·php·音视频·实时音视频
Yutengii12 小时前
如何下载b站视频到本地(b站视频本地化指南)
音视频