【贪心算法】【中位贪心】LeetCode:100123.执行操作使频率分数最大

涉及知识点

双指针
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

贪心算法

题目

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

你可以对数组执行 至多 k 次操作:

从数组中选择一个下标 i ,将 nums[i] 增加 或者 减少 1 。

最终数组的频率分数定义为数组中众数的 频率 。

请你返回你可以得到的 最大 频率分数。

众数指的是数组中出现次数最多的数。一个元素的频率指的是数组中这个元素的出现次数。

示例 1:

输入:nums = [1,2,6,4], k = 3

输出:3

解释:我们可以对数组执行以下操作:

  • 选择 i = 0 ,将 nums[0] 增加 1 。得到数组 [2,2,6,4] 。
  • 选择 i = 3 ,将 nums[3] 减少 1 ,得到数组 [2,2,6,3] 。
  • 选择 i = 3 ,将 nums[3] 减少 1 ,得到数组 [2,2,6,2] 。
    元素 2 是最终数组中的众数,出现了 3 次,所以频率分数为 3 。
    3 是所有可行方案里的最大频率分数。
    示例 2:
    输入:nums = [1,4,4,2,4], k = 0
    输出:3
    解释:我们无法执行任何操作,所以得到的频率分数是原数组中众数的频率 3 。
    参数范围
    1 <= nums.length <= 10^5^
    1 <= nums[i] <= 10^9^
    0 <= k <= 10^14^

贪心算法(中位数贪心)

假定众数是x,假定nums的长度为n,将nums按升序排序。

x一定是nums中的数

我们用反证发证明。

x < nums[0] 所有数先降到nums[0],再由nums[0]降到x,不如直接降到nums[0]
x > nums[n-1] 所有数先升到nums[n-1],再升到x,不如只升到nums[n-1]
x在nums[i]和nums[j]之间,nums中比x小的a个数,比x大的b个数。 如果a>=b,x--,可以节省a-b个操作,直到x等于nums[i];否则x++,直到x等于nums[j]。

改变的数一定是一个子数组

假定改变的数是两个子数组[i1,i2]和[i3,i4]。如果x在[i1,i2]之间,则将i4替换成i2+1,直到两个子数组挨着一起合并。如果x在[i3,i4]之间,则i1替换i3-1,直到两个子数组挨着一起合并。

x只需要考虑中位数(中位数贪心算法)

来证明贪心算法 的正确性。假定x是nums[i],x前面的数a个,x后面的数b个,i变成i-1操作次数变化:b-(a-1),如果表达式大于等于0,则没必要左移。b -a+1 >= 0,即a <=b+1。同理b <=a+1。即abs(a-b)<=1,则没必要左移和右移。

即:

如果n为偶数,中间任意一个。

如果n为奇数,中间的那个。

代码

核心代码

cpp 复制代码
class Solution {
public:
	int maxFrequencyScore(vector<int>& nums, long long k) {
		m_c = nums.size();
		sort(nums.begin(), nums.end());
		vector<long long> vPreSum = { 0 };
		for (const auto& n : nums)
		{
			vPreSum.emplace_back(n+vPreSum.back());
		}	
		int iRet = 0;
		for (int left = 0, right = 0; left < m_c; left++)
		{
			while (right <= m_c)
			{
				const long long mid = left + (right - left) / 2;
				const long long llLessNeed = (mid - left) * nums[mid] - (vPreSum[mid] - vPreSum[left]);
				const long long llEqualMoreNeed = (vPreSum[right] - vPreSum[mid]) - nums[mid] * (right - mid);
				if (llLessNeed + llEqualMoreNeed <= k)
				{
					iRet = max(iRet, right - left);
					right++;
				}
				else
				{
					break;
				}
			}			
		}
		return iRet;
	}
	int m_c;
};

测试用例

cpptemplate 复制代码
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}

int main()
{
	Solution slu;
	vector<int> nums;
	int k;
	{
		Solution slu;
		nums = { 1,4,4,2,4 }, k = 0;
		auto res = slu.maxFrequencyScore(nums, k);
		Assert(3, res);
	}
	{
		Solution slu;
		nums = { 16, 2, 6, 20, 2, 18, 16, 8, 15, 19, 22, 29, 24, 2, 26, 19 }, k = 40;
		auto res = slu.maxFrequencyScore(nums, k);
		Assert(11, res);
	}
	
	{
		Solution slu;
		nums = { 1, 2, 6, 4 }, k = 3;
		auto res = slu.maxFrequencyScore(nums, k);
		Assert(3, res);
	}

	
	//CConsole::Out(res);
}

错误解法:二分查找+双指针

错误原因: 随着left增加targge可能减少

class Solution {

public:

int maxFrequencyScore(vector& nums, long long k) {

m_c = nums.size();

sort(nums.begin(), nums.end());

vector vPreSum = { 0 };

for (const auto& n : nums)

{

vPreSum.emplace_back(n+vPreSum.back());

}

long long llLeftSum = 0;//nums[left,target)的和,nums升序

int iRet = 0;

for (int left = 0, target = 0; left < m_c; left++)

{

while ((target < m_c) && (nums[target]*(target-left)- llLeftSum <= k))

{

const int right = BF(vPreSum,nums, target, k - (nums[target] * (target - left) - llLeftSum));

iRet = max(iRet, right - left);

llLeftSum += nums[target];

target++;

}

llLeftSum -= nums[left];

}

return iRet;

}

int BF(const vector& vPreSum,const vector& nums, int index,long long canUse)

{

int left = index, right = vPreSum.size();

while (right - left > 1)

{

const int mid = left + (right- left)/2 ;

if ((vPreSum[mid] - vPreSum[index]- nums[index] * (mid - index)) <= canUse)

{

left = mid;

}

else

{

right = mid;

}

}

return left;

}

int m_c;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 C++17

如无特殊说明,本算法用**C++**实现。

相关推荐
old_power23 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
Bran_Liu37 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing39 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
Jcqsunny1 小时前
[分治] FBI树
算法·深度优先··分治
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
謓泽2 小时前
【数据结构】二分查找
数据结构·算法
00Allen003 小时前
Java复习第四天
算法·leetcode·职场和发展
攻城狮7号3 小时前
【10.2】队列-设计循环队列
数据结构·c++·算法
_DCG_4 小时前
c++常见设计模式之装饰器模式
c++·设计模式·装饰器模式