深度学习笔记_7经典网络模型LSTM解决FashionMNIST分类问题

1、 调用模型库,定义参数,做数据预处理

python 复制代码
import numpy as np
import torch
from torchvision.datasets import FashionMNIST
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch import nn
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score, roc_curve, auc
import matplotlib.pyplot as plt

# 检查 GPU 可用性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)

# 设置超参数
sequence_length = 28
input_size = 28  
hidden_size = 128
num_layers = 2 
num_classes = 10
batch_size = 64
learning_rate = 0.001
num_epochs = 50

# 定义数据转换操作
transform = transforms.Compose([
    transforms.RandomRotation(degrees=[-30, 30]),   # 随机旋转
    transforms.RandomHorizontalFlip(),   # 随机水平翻转
    transforms.RandomCrop(size=28, padding=4),   # 随机裁剪
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),   # 颜色抖动
    transforms.ToTensor(),  # 将图像转换为张量
    transforms.Normalize((0.5,), (0.5,))
])

2、下载FashionMNIST训练集

python 复制代码
# 下载FashionMNIST训练集
trainset = FashionMNIST(root='data', train=True,
                        download=True, transform=transform)

# 下载FashionMNIST测试集
testset = FashionMNIST(root='data', train=False,
                       download=True, transform=transform)

# 创建 DataLoader 对象
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False)

3、定义LSTM模型

python 复制代码
# 定义LSTM模型
class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, num_classes):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size  # LSTM隐含层神经元数
        self.num_layers = num_layers  # LSTM层数
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)  # LSTM层
        self.fc = nn.Linear(hidden_size, num_classes)  # 全连接层

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)  # 初始化状态
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
        out, _ = self.lstm(x, (h0, c0))  # LSTM前向传播
        out = self.fc(out[:, -1, :])  # 只取序列最后一个时间步的输出
        return F.log_softmax(out, dim=1)  # 使用log_softmax作为输出

# 初始化模型、优化器和损失函数
model = LSTM(input_size, hidden_size, num_layers, num_classes).to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()

# 记录训练和测试过程中的损失和准确率
train_losses = []
test_losses = []
train_accuracies = []
test_accuracies = []

conf_matrix_list = []
accuracy_list = []
error_rate_list = []
precision_list = []
recall_list = []
f1_score_list = []
roc_auc_list = []

4、 训练循环

python 复制代码
for epoch in range(num_epochs):
    model.train()
    train_loss = 0.0
    correct = 0
    total = 0

    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        data, target = data.to(device), target.to(device)  # 将数据移到 GPU 上
        data = data.view(-1, sequence_length, input_size)

        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        train_loss += loss.item()

        # 计算训练准确率
        _, predicted = output.max(1)
        total += target.size(0)
        correct += predicted.eq(target).sum().item()

    # 计算平均训练损失和训练准确率
    train_loss /= len(train_loader)
    train_accuracy = 100. * correct / total
    train_losses.append(train_loss)
    train_accuracies.append(train_accuracy)

    # 测试模型
    model.eval()
    test_loss = 0.0
    correct = 0
    all_labels = []
    all_preds = []

    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)  # 将数据移到 GPU 上
            data = data.view(-1, sequence_length, input_size)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
            all_labels.extend(target.cpu().numpy())  # 将结果移到 CPU 上
            all_preds.extend(pred.cpu().numpy())  # 将结果移到 CPU 上

    # 计算平均测试损失和测试准确率
    test_loss /= len(test_loader)
    test_accuracy = 100. * correct / len(test_loader.dataset)
    test_losses.append(test_loss)
    test_accuracies.append(test_accuracy)

    # 计算额外的指标
    conf_matrix = confusion_matrix(all_labels, all_preds)
    conf_matrix_list.append(conf_matrix)

    accuracy = accuracy_score(all_labels, all_preds)
    accuracy_list.append(accuracy)

    error_rate = 1 - accuracy
    error_rate_list.append(error_rate)

    precision = precision_score(all_labels, all_preds, average='weighted')
    recall = recall_score(all_labels, all_preds, average='weighted')
    f1 = f1_score(all_labels, all_preds, average='weighted')

    precision_list.append(precision)
    recall_list.append(recall)
    f1_score_list.append(f1)

    fpr, tpr, thresholds = roc_curve(all_labels, all_preds, pos_label=1)
    roc_auc = auc(fpr, tpr)
    roc_auc_list.append(roc_auc)

    # 打印每个 epoch 的指标
    print(f'Epoch [{epoch + 1}/{num_epochs}] -> Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.2f}%, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.2f}%')
# 打印或绘制训练后的最终指标
print(f'Final Confusion Matrix:\n{conf_matrix_list[-1]}')
print(f'Final Accuracy: {accuracy_list[-1]:.2%}')
print(f'Final Error Rate: {error_rate_list[-1]:.2%}')
print(f'Final Precision: {precision_list[-1]:.2%}')
print(f'Final Recall: {recall_list[-1]:.2%}')
print(f'Final F1 Score: {f1_score_list[-1]:.2%}')
print(f'Final ROC AUC: {roc_auc_list[-1]:.2%}')

5、绘制Loss、Accuracy曲线图, 计算混淆矩阵

python 复制代码
import seaborn as sns
# 绘制Loss曲线图
plt.figure()
plt.plot(train_losses, label='Train Loss', color='blue')
plt.plot(test_losses, label='Test Loss', color='red')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Loss Curve')
plt.grid(True)
plt.savefig('loss_curve.png')
plt.show()


# 绘制Accuracy曲线图
plt.figure()
plt.plot(train_accuracies, label='Train Accuracy', color='red')  # 绘制训练准确率曲线
plt.plot(test_accuracies, label='Test Accuracy', color='green')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Curve')
plt.grid(True)
plt.savefig('accuracy_curve.png')
plt.show()


# 计算混淆矩阵
class_labels = [str(i) for i in range(10)]
confusion_mat = confusion_matrix(all_labels, all_preds)
plt.figure()
sns.heatmap(confusion_mat, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.savefig('confusion_matrix.png')
plt.show()
相关推荐
All The Way North-1 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
kida_yuan1 小时前
【Linux】运维实战笔记 — 我常用的方法与命令
linux·运维·笔记
laplace01231 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
三块可乐两块冰1 小时前
【第二十八周】机器学习笔记二十九
笔记
血小板要健康2 小时前
Java基础常见面试题复习合集1
java·开发语言·经验分享·笔记·面试·学习方法
童话名剑2 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh2 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
智者知已应修善业2 小时前
【查找字符最大下标以*符号分割以**结束】2024-12-24
c语言·c++·经验分享·笔记·算法
91刘仁德3 小时前
c++类和对象(下)
c语言·jvm·c++·经验分享·笔记·算法
Stream_Silver3 小时前
【Agent学习笔记3:使用Python开发简单MCP服务】
笔记·python