长短期记忆(LSTM)神经网络-多输入时序预测

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、部分程序:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,使用长短期记忆神经网络(LSTM),进行数据回归预测

  • 输入训练的数据包含8 个特征,1 个响应值,即通过8 个输入 值预测1个输出值(多变量时序预测)

  • 归一化训练数据,提升网络泛化性

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档,其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、部分程序:

clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共472个样本(每一行表示一个样本)
% 2. 每个样本8个特征值(即前8列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第9列为表示样本的响应值,即被预测的变量)

%% 划分训练集和测试集
InPut_num = 1:1:8; % 输入特征个数,数据表格中前8列为输入值,因此设置为1:1:8,若前5个为输入则设置为1:1:5
OutPut_num = 9; % 输出响应个数,本例仅一个响应值,为数据表格中第9个,若多个响应值参照上行数据格式设置为x:1:y

% 选取前376个样本作为训练集,后96个样本作为测试集,即(1:376),和(377:end)
Train_InPut = Data(1:376,InPut_num); % 训练输入
Train_OutPut = Data(1:376,OutPut_num); % 训练输出
Test_InPut = Data(377:end,InPut_num); % 测试输入
Test_OutPut = Data(377:end,OutPut_num); % 测试输出
clear Temp;
%% 数据归一化
% 将数据归一化到0-1之间
Temp = [Train_OutPut;Test_OutPut];
[~, Ps] = mapminmax(Temp',0,1); 
% 归一化训练输入值
Sc = size(Train_InPut);
Temp = reshape(Train_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Train_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化测试输入值
Sc = size(Test_InPut);
Temp = reshape(Test_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Test_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化训练输出值
Train_OutPut = mapminmax('apply',Train_OutPut',Ps);
% 归一化测试输出值
Test_OutPut = mapminmax('apply',Test_OutPut',Ps);

四、完整程序下载:

相关推荐
余生H1 小时前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
代码不行的搬运工1 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
罗小罗同学1 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭2 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~2 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
只怕自己不够好2 小时前
RNN与LSTM,通过Tensorflow在手写体识别上实战
rnn·tensorflow·lstm
极客代码2 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
Seeklike2 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
YRr YRr2 小时前
如何使用 PyTorch 实现图像分类数据集的加载和处理
pytorch·深度学习·分类