torch.rand()和torch.randn()的区别

torch.rand() 和 torch.randn() 是 PyTorch 中用于生成张量的两个函数,它们之间的主要区别在于生成张量元素的方式不同:

1.torch.rand():

torch.rand() 用于生成元素值在 [0, 1) 之间均匀分布的随机张量。

返回的张量中的每个元素都是从区间 [0, 1) 的均匀分布中随机采样得到的。

示例:

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值在 [0, 1) 的均匀分布中随机取样
x = torch.rand(2, 3)

2.torch.randn():

torch.randn() 用于生成元素值服从标准正态分布(均值为0,方差为1)的随机张量。

返回的张量中的每个元素都是从标准正态分布中随机采样得到的。

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值服从标准正态分布
x = torch.randn(2, 3)

总的来说,torch.rand() 生成的张量中的元素值来自 [0, 1) 的均匀分布,而 torch.randn() 生成的张量中的元素值来自标准正态分布。因此,你可以根据需要选择合适的随机初始化方法。

相关推荐
小众AI1 小时前
AI-on-the-edge-device - 将“旧”设备接入智能世界
人工智能·开源·ai编程
舟寒、1 小时前
【论文分享】Ultra-AV: 一个规范化自动驾驶汽车纵向轨迹数据集
人工智能·自动驾驶·汽车
梦云澜4 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
远洋录4 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董5 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师6 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
摸鱼仙人~7 小时前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
python算法(魔法师版)7 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui7 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20258 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习