torch.rand()和torch.randn()的区别

torch.rand() 和 torch.randn() 是 PyTorch 中用于生成张量的两个函数,它们之间的主要区别在于生成张量元素的方式不同:

1.torch.rand():

torch.rand() 用于生成元素值在 [0, 1) 之间均匀分布的随机张量。

返回的张量中的每个元素都是从区间 [0, 1) 的均匀分布中随机采样得到的。

示例:

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值在 [0, 1) 的均匀分布中随机取样
x = torch.rand(2, 3)

2.torch.randn():

torch.randn() 用于生成元素值服从标准正态分布(均值为0,方差为1)的随机张量。

返回的张量中的每个元素都是从标准正态分布中随机采样得到的。

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值服从标准正态分布
x = torch.randn(2, 3)

总的来说,torch.rand() 生成的张量中的元素值来自 [0, 1) 的均匀分布,而 torch.randn() 生成的张量中的元素值来自标准正态分布。因此,你可以根据需要选择合适的随机初始化方法。

相关推荐
m0_650108242 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼2 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试3 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人4 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
WGS.4 小时前
llama factory 扩充词表训练
深度学习
共绩算力4 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector5 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会5 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥5 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone6 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia