torch.rand()和torch.randn()的区别

torch.rand() 和 torch.randn() 是 PyTorch 中用于生成张量的两个函数,它们之间的主要区别在于生成张量元素的方式不同:

1.torch.rand():

torch.rand() 用于生成元素值在 [0, 1) 之间均匀分布的随机张量。

返回的张量中的每个元素都是从区间 [0, 1) 的均匀分布中随机采样得到的。

示例:

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值在 [0, 1) 的均匀分布中随机取样
x = torch.rand(2, 3)

2.torch.randn():

torch.randn() 用于生成元素值服从标准正态分布(均值为0,方差为1)的随机张量。

返回的张量中的每个元素都是从标准正态分布中随机采样得到的。

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值服从标准正态分布
x = torch.randn(2, 3)

总的来说,torch.rand() 生成的张量中的元素值来自 [0, 1) 的均匀分布,而 torch.randn() 生成的张量中的元素值来自标准正态分布。因此,你可以根据需要选择合适的随机初始化方法。

相关推荐
用户6915811416527 分钟前
Ascend Extension for PyTorch的源码解析
人工智能
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗3 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习