torch.rand()和torch.randn()的区别

torch.rand() 和 torch.randn() 是 PyTorch 中用于生成张量的两个函数,它们之间的主要区别在于生成张量元素的方式不同:

1.torch.rand():

torch.rand() 用于生成元素值在 [0, 1) 之间均匀分布的随机张量。

返回的张量中的每个元素都是从区间 [0, 1) 的均匀分布中随机采样得到的。

示例:

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值在 [0, 1) 的均匀分布中随机取样
x = torch.rand(2, 3)

2.torch.randn():

torch.randn() 用于生成元素值服从标准正态分布(均值为0,方差为1)的随机张量。

返回的张量中的每个元素都是从标准正态分布中随机采样得到的。

python 复制代码
import torch

# 生成一个形状为 (2, 3) 的随机张量,值服从标准正态分布
x = torch.randn(2, 3)

总的来说,torch.rand() 生成的张量中的元素值来自 [0, 1) 的均匀分布,而 torch.randn() 生成的张量中的元素值来自标准正态分布。因此,你可以根据需要选择合适的随机初始化方法。

相关推荐
Shawn_Shawn4 小时前
人工智能入门概念介绍
人工智能
极限实验室4 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9965 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥5 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉5 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明6 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习6 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考7 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234567 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区7 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习