距离矩阵路径优化Python Dijkstra(迪杰斯特拉)算法和冲突驱动子句学习

Dijkstra算法

Dijkstra 算法是一种流行的寻路算法,通常用于基于图的问题,例如在地图上查找两个城市之间的最短路径、确定送货卡车可能采取的最短路径,甚至创建游戏地图。其背后的直觉基于以下原则:从起始顶点访问所有相邻顶点,同时跟踪迄今为止距起始顶点的最小距离。 该算法按以下步骤运行:

  1. 创建一个数组,用于保存每个顶点与起始顶点的距离。最初,将所有顶点的距离设置为无穷大,起始顶点除外,起始顶点应设置为 0。
  2. 创建一个优先级队列(堆)并插入距离为0的起始顶点。
  3. 当优先级队列中仍有顶点时,选择距起始顶点记录距离最小的顶点并访问其相邻顶点。
  4. 对于每个相邻顶点,检查它是否已经被访问过。 如果尚未访问过,则通过将其权重添加到迄今为止为其父级找到的最小距离来计算其暂定距离
  5. 如果这个暂定距离小于之前记录的值(如果有),请在我们的"distances"数组中更新它。
  6. 最后,将这个访问过的顶点及其更新的距离添加到我们的优先级队列中,并重复步骤 3,直到我们到达目的地或耗尽所有节点。

通过迭代所有相邻节点,我们可以确保我们已经探索了每条可能的路径,以确定哪条路径的总成本(距离)最短。 我们使用优先级队列数据结构来有效地跟踪接下来需要访问哪些节点,而不是在每次迭代中扫描每个节点。

通过以这种方式跟踪距离并迭代邻居,我们最终可以找到从起始节点(或更确切地说距离[源])到图中其他节点/城市的所需最小路径。

这就是 Dijkstra 算法背后的基本直觉!通过迭代地执行这些步骤,我们最终将找出从源顶点开始的图中任意顶点的最短距离。现在让我们用 Python 编写代码。

Python实现算法

python 复制代码
def min_distance(distances, visited):
    min_val = float('inf')
    min_index = -1
    for i in range(len(distances)):
        if distances[i] < min_val and i not in visited:
            min_val = distances[i]
            min_index = i
    return min_index

def dijkstra_algorithm(graph, start_node):
    num_nodes = len(graph)
    distances = [float('inf')] * num_nodes
    visited = []
    distances[start_node] = 0
    for i in range(num_nodes):
        current_node = min_distance(distances, visited)
        visited.append(current_node)
        for j in range(num_nodes):
            if graph[current_node][j] != 0:
                new_distance = distances[current_node] + graph[current_node][j]
                if new_distance < distances[j]:
                    distances[j] = new_distance
    return distances

以下是如何通过示例图使用此函数:

python 复制代码
# 2D array
graph = [[0, 7, 9, 0, 0, 14],
         [7, 0, 10, 15, 0, 0],
         [9, 10, 0, 11, 0, 2],
         [0, 15, 11, 0, 6, 0],
         [0, 0, 0, 6, 0 ,9],
         [14. 0 ,2 ,0 ,9 ,8 ,10]]

shortest_distances = dijkstra_algorithm(graph, 'A')

print(shortest_distances)
python 复制代码
[0.00...   # Distance from start node to itself is zero 
7           
9           
20          
20           
12          
]

这演示了如何将 Dijkstra 算法与 Python 结合使用来查找图中的最短路径。

Python可视化 Dijkstra算法

开放街道地图(OSM)

Python Dijkstra算法寻找最短路径

冲突驱动子句学习

  • 预处理:计算距离矩阵
  • 创建网络图
  • 使用 NetworkX 计算最短路径
  • 使用 Plotly 动画生成模拟
  • 使用 OR-Tools 解决旅行商问题(简单的路线优化)
  • 使用 OR-Tools 解决车辆路径问题(高级路径优化)
参阅一 - 亚图跨际
参阅二 - 亚图跨际
相关推荐
华清远见IT开放实验室1 分钟前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
jiao_mrswang25 分钟前
leetcode-18-四数之和
算法·leetcode·职场和发展
mqiqe26 分钟前
Elasticsearch 分词器
python·elasticsearch
qystca34 分钟前
洛谷 B3637 最长上升子序列 C语言 记忆化搜索->‘正序‘dp
c语言·开发语言·算法
薯条不要番茄酱34 分钟前
数据结构-8.Java. 七大排序算法(中篇)
java·开发语言·数据结构·后端·算法·排序算法·intellij-idea
今天吃饺子39 分钟前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
是阿建吖!40 分钟前
【优选算法】二分查找
c++·算法
王燕龙(大卫)44 分钟前
leetcode 数组中第k个最大元素
算法·leetcode
不去幼儿园2 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
Mr_Xuhhh2 小时前
重生之我在学环境变量
linux·运维·服务器·前端·chrome·算法