【数据结构】栈的使用|模拟实现|应用|栈与虚拟机栈和栈帧的区别

目录

一、栈(Stack)

[1.1 概念](#1.1 概念)

[1.2 栈的使用](#1.2 栈的使用)

[1.3 栈的模拟实现](#1.3 栈的模拟实现)

[1.4 栈的应用场景](#1.4 栈的应用场景)

[1. 改变元素的序列](#1. 改变元素的序列)

[2. 将递归转化为循环](#2. 将递归转化为循环)

[3. 括号匹配](#3. 括号匹配)

[4. 逆波兰表达式求值](#4. 逆波兰表达式求值)

[5. 出栈入栈次序匹配](#5. 出栈入栈次序匹配)

[6. 最小栈](#6. 最小栈)

[1.5 概念区分](#1.5 概念区分)


一、栈(Stack)

1.1 概念

:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则(也就是先进后出)

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶

出栈:栈的删除操作叫做出栈。出数据在栈顶


1.2 栈的使用

|-----------------|-----------------------|
| 方法 | 功能 |
| Stack() | 构造一个空的栈 |
| E push(E e) | 将e入栈,并返回e |
| E pop() | 将栈顶元素出栈并返回 (有返回值) |
| E peek() | 获取栈顶元素 |
| int size() | 获取栈中有效元素个数 |
| boolean empty() | 检测栈是否为空 |

java 复制代码
public static void main(String[] args) {
        Stack<Integer> s = new Stack<>();
        s.push(1);
        s.push(2);
        s.push(3);
        s.push(4);
        System.out.println(s.size()); // 获取栈中有效元素个数---> 4
        System.out.println(s.peek()); // 获取栈顶元素---> 4
        s.pop(); // 4出栈,栈中剩余1 2 3,栈顶元素为3
        System.out.println(s.pop()); // 3出栈,栈中剩余1 2 栈顶元素为3
        if (s.empty()) {
            System.out.println("栈空");
        } else {
            System.out.println(s.size());
        }
    }

1.3 栈的模拟实现

从上图中可以看到,Stack继承了Vector,Vector和ArrayList类似,都是动态的顺序表,不同的是Vector是线程安全的

栈的模拟实现有两种:一种是数组实现,另一种是链表(单链表或者双链表)实现,不管是哪种,都得保证入栈 出栈操作的时间复杂度为O(1)

下面这个是数组模拟实现栈的方式:

java 复制代码
import java.util.Arrays;

//数组实现栈
public class MyStack {

    public int[] elem;//定义数组
    public int uesdSize;//记录当前数组的有效元素的个数,同时可以当作下标使用

    public static final int DEFAULT_CAPACITY = 10;//默认容量大小

    public MyStack() {
        this.elem = new int[DEFAULT_CAPACITY];
    }

    //判断栈是否满了
    public boolean isFull() {
        return uesdSize == elem.length;//这里不能写成DEFAULT_CAPACITY,DEFAULT_CAPACITY被final修饰不能变
    }
    //压栈 入栈
    public void push(int val) {
        if (isFull()) {
            this.elem = Arrays.copyOf(elem,2*elem.length);//扩容为原数组
        } else {
            elem[uesdSize++] = val;
        }
    }
    //判空
    public boolean isEmpty() {
        return uesdSize == 0;
    }
    //出栈
    public int pop() {
        if (isEmpty()) {
            throw new EmptyStackException("栈为空...");
        }
        int oldVal = elem[uesdSize-1];
        uesdSize--;
        elem[uesdSize] = 0;
        return oldVal;
    }
    //获取栈顶元素
    public int peek() {
        if (isEmpty()) {
            throw new EmptyStackException("栈为空...");
        }
        return elem[uesdSize-1];
    }
}

如果采用单向链表实现栈,那么为了保证入栈出栈的时间复杂度为O(1)

入栈只能采用头插法,尾插法需要遍历链表直到尾结点,这样就不满足时间复杂度为O(1)

出栈也只能采用头删法,可能大家会想用last来标记尾结点,从而不用遍历,但是这样在删除了一次以后,尾节点还得去遍历找前一个结点,还是不满足时间复杂度为O(1)
如果采用双向链表实现栈,那么头插尾插都是可以的


1.4 栈的应用场景

1. 改变元素的序列
  1. 若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是()

A: 1,4,3,2 B: 2,3,4,1 C: 3,1,4,2 D: 3,4,2,1

2.一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是( )。

A: 12345ABCDE B: EDCBA54321 C: ABCDE12345 D: 54321EDCBA

答:

1.由于栈的特性是先进后出,C选项中:当1,2,3都已经入栈后,3出栈,然后栈顶为2,不可能直接就让1进行出栈,所以错误

2.仍然考察的是栈的特性是先进后出,先进栈的元素最后出栈,那么也就是B

2. 将递归转化为循环

比如:逆序打印链表

java 复制代码
// 递归方式
    void printList(Node head){
        if(null != head){
            printList(head.next);
        System.out.print(head.val + " ");
        }
    }

这里循环的方式就类似上面的第二题,入栈元素出栈也就相当于逆序

java 复制代码
// 循环方式
    void printList(Node head){
        if(null == head){
            return;
        }
    Stack<Node> s = new Stack<>();
        // 将链表中的结点保存在栈中
        Node cur = head;
        while(null != cur){
            s.push(cur);
            cur = cur.next;
        }
        // 将栈中的元素出栈
        while(!s.empty()){
            System.out.print(s.pop().val + " ");
        }
    }
3. 括号匹配

首先思考一下为什么这个题需要用到栈这个数据结构,什么时候会用到这个数据结构?

一般和顺序有关的就需要考虑栈

这题的思路:

首先要明白这个题目不是偶数就一定是匹配的,eg:[( ] )

只要是左括号就入栈,遇到右括号就看是否匹配

以下三种情况是不匹配的:

(1)右括号不匹配 就直接返回false

(2)字符串还没遍历完成 但是栈是空的 此时也是不匹配 eg:())

(3)字符串遍历完了 但是栈不为空 此时也是不匹配 eg:()(

java 复制代码
class Solution {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        //遍历字符串
        for(int i=0;i<s.length();i++) {
            char ch = s.charAt(i);
            if(ch=='{'||ch=='['||ch == '(') {
                //左括号入栈
                stack.push(ch);
            } else {
                //右括号
                if(stack.isEmpty()) {
                    //栈为空
                    return false;
                } 
                //栈不为空,右括号判断匹配
                 char ch2 = stack.peek();
                 if(ch2=='{'&&ch=='}'||ch2=='['&&ch==']'||ch2=='('&&ch==')') {
                 stack.pop();
                 } else {
                    return false;
                 }
            }
        }
        //遍历完了,但是栈不为空
        if(!stack.isEmpty()) 
            return false;
        return true;

         //return stcak.isEmpty() 可以直接代替前三行
    }
}

注意

(1) Stack<Character> stack = new Stack<>();这里的类型为Character

(2) ch2为左括号,ch为右括号

(3)怎么判断匹配,一组一组符合即可


4. 逆波兰表达式求值

看这题之前,我们先来学习一下什么是前中后缀表达式,中缀表达式 转 后缀表达式 ,最后再来看怎么根据后缀表达式计算结果

(1)中缀表达式

操作符以中缀形式位于运算数中间(如:3+2),是我们日常通用的算术和逻辑公式表示方法

(2)后缀表达式

又称逆波兰式(Reverse Polish Notation - RPN),操作符以后缀形式位于两个运算数后(如:3+2的后缀表达形式就是3 2 +)

(3)前缀表达式:

又称波兰式(Polish Notation),操作符以前缀形式位于两个运算数前(如:3+2的前缀表达形式就是+ 3 2)
手工 如何将中缀表达式 转 后缀表达式?

以a+b*c+(d*e+f)*g为例,将其转为 后缀表达式

(1)按先加减后乘除的原则给表达式加括号,得到的就是 (a+(b*c) )+( ( (d*e)+f )*g )

(2)由内到外把括号去掉,并把运算符放在要去掉括号的后面,也就是 abc*+ de*f+ g* +

计算器的逻辑就是这样的,会把我们输入的带有括号的表达式转为不带括号的表达式,因为计算器也不知道括号是啥

在这里代码题考的最多的就是根据后缀表达式计算结果,那么思路是什么呢?

将后缀表达式中的数字依次入栈, 遇到运算数,就弹出栈顶的两个元素

第一个数字作为右操作数,第二个数作为左操作数,然后把 数字2 运算数 数字1 计算得到的结果入栈 (这个顺序不能改变)

然后继续这个过程,直到栈中只剩下最后一个元素,直接返回即可

代码实现:

java 复制代码
class Solution {
    public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
        for(int i=0;i<tokens.length;i++) {
            String str = tokens[i];
           if(!isOperatons(str)) {
               //不是运算符,也就是数字
               //将字符串转为数字
               int val = Integer.valueOf(str);
               //将数字入栈
               stack.push(val);
           } else {
               //是运算符
                  //弹除两个栈顶元素,第一个为右操作数
               int num2 = stack.pop();
               int num1 = stack.pop();
                  //计算
               switch(str) {
                   case "+":
                        stack.push(num1+num2);
                        break;
                    case "-":
                        stack.push(num1-num2);
                        break; 
                   case "*":
                        stack.push(num1*num2);
                        break; 
                   case "/":
                        stack.push(num1/num2);
                        break;
               }
           }
        }
        return stack.pop();
    }
    //判断这个字符串是不是一个运算符
    private boolean isOperatons(String str) {
        if(str.equals("+")||str.equals("-")||str.equals("*")||str.equals("/")) {
            return true;
        } else {
            return false;
        }
    }
}

注意:

(1)入栈需要把字符串变为数字 int val = Integer.valueOf(str);

(2)弹除两个栈顶元素,第一个为右操作数,第二个为左操作数

5. 出栈入栈次序匹配

思路:

(1)遍历pushV数组 ,把pushV数组的元素放到栈当中

(2)每次放一个元素,就得看和popV的元素是否一样

(3)如果不一样,i++ 一样的话,j++,并将栈顶元素弹出(i是遍历pushA数组的,j是遍历popA数组的)

直到 遍历完popV 结束

如下图 当pushV栈顶元素和popV[j]一样,我们是需要将pushA的栈顶元素出栈的,不然无法判断下一个元素是否相等

java 复制代码
public class Solution {
    public boolean IsPopOrder (int[] pushV, int[] popV) {
        Stack<Integer> stack = new Stack();
        int j =0;
        for(int i=0;i<pushV.length;i++) {
            stack.push(pushV[i]);
            //如果pushV栈顶元素和popV[j]一样
            while(!stack.isEmpty()&&j<popV.length&&stack.peek()==popV[j]) {
                j++;
                stack.pop();
            }
        }
        if(j<popV.length) {
            return false;
        }
        return true;

        //return j == popV.length;  //这里行可以代替前三行
        //return stack.isEmpty;   //或者这样写也行
    }
}

注意:当pushV栈顶元素和popV[j]一样时,可能存在 j下标越界 , 栈被弹空了的情况,所以需要特别考虑

6. 最小栈

思路:

这题一个栈无法得到最小元素的(如果最小元素不在栈顶,那么时间复杂度就不满足O(1),违背了题目条件),那么就考虑用两个栈

(1)普通栈Stack用来存储数据 , 最小栈minStack用来存最小元素

(2)普通栈一定要存有元素

(3)最小栈 如果是第一次存放数据 直接放 ,否则需要和最小栈的栈顶元素去比较 <=的时候才存入(这里特别注意一下=的时候,看图解释:这个时候如果右边的-3不放,当普通栈pop,最小栈也pop,那么最小值就不会是-3,而是-2,这显然不符合)

java 复制代码
class MinStack {
    Stack<Integer> stack;
    Stack<Integer> minStack;
    //构造方法:初始化两个栈
    public MinStack() {
        stack = new Stack<>();
        minStack = new Stack<>();
    }
    
    public void push(int val) {
        stack.push(val);
        //如果第一次放(也就是minStack为空),直接放即可
        if(minStack.isEmpty()) {
            minStack.push(val);
        } else {
            //不是第一次放,那就只有val<= minStack栈顶元素才可以放
            if(val<= minStack.peek()) {
                minStack.push(val);
            }
        }
    }
    
    public void pop() {
        //根据题目不用考虑空栈
           int val = stack.pop();
           //如果普通栈pop出的元素就是最小,那么minStack也需要pop
           if(minStack.peek()==val) 
           {
               minStack.pop();
           }
        
        
    }
    //获取栈顶元素
    public int top() {
        return stack.peek();
    }
    //获取最小值
    public int getMin() {
        return minStack.peek();
    }
}

1.5 概念区分

栈、虚拟机栈、栈帧有什么区别呢?

栈:一种先进后出的数据结构

虚拟机栈:JVM的一块内存

栈帧:调用方法时,给方法开辟的一块内存


本次内容就到此啦,欢迎评论区或者私信交流,觉得笔者写的还可以,或者自己有些许收获的,麻烦铁汁们动动小手,给俺来个一键三连,万分感谢 !

相关推荐
蓝天星空16 分钟前
spring cloud gateway 3
java·spring cloud
罗政21 分钟前
PDF书籍《手写调用链监控APM系统-Java版》第9章 插件与链路的结合:Mysql插件实现
java·mysql·pdf
Tester_孙大壮21 分钟前
了解智能运维
运维
从以前24 分钟前
【算法题解】Bindian 山丘信号问题(E. Bindian Signaling)
开发语言·python·算法
一根稻草君27 分钟前
利用poi写一个工具类导出逐级合并的单元格的Excel(通用)
java·excel
不白兰27 分钟前
[代码随想录23回溯]回溯的组合问题+分割子串
算法
kirito学长-Java30 分钟前
springboot/ssm网上宠物店系统Java代码编写web宠物用品商城项目
java·spring boot·后端
木头没有瓜44 分钟前
ruoyi 请求参数类型不匹配,参数[giftId]要求类型为:‘java.lang.Long‘,但输入值为:‘orderGiftUnionList
android·java·okhttp
奋斗的老史44 分钟前
Spring Retry + Redis Watch实现高并发乐观锁
java·redis·spring
high20111 小时前
【Java 基础】-- ArrayList 和 Linkedlist
java·开发语言