【数据结构】栈的使用|模拟实现|应用|栈与虚拟机栈和栈帧的区别

目录

一、栈(Stack)

[1.1 概念](#1.1 概念)

[1.2 栈的使用](#1.2 栈的使用)

[1.3 栈的模拟实现](#1.3 栈的模拟实现)

[1.4 栈的应用场景](#1.4 栈的应用场景)

[1. 改变元素的序列](#1. 改变元素的序列)

[2. 将递归转化为循环](#2. 将递归转化为循环)

[3. 括号匹配](#3. 括号匹配)

[4. 逆波兰表达式求值](#4. 逆波兰表达式求值)

[5. 出栈入栈次序匹配](#5. 出栈入栈次序匹配)

[6. 最小栈](#6. 最小栈)

[1.5 概念区分](#1.5 概念区分)


一、栈(Stack)

1.1 概念

:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作 。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则(也就是先进后出)

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶

出栈:栈的删除操作叫做出栈。出数据在栈顶


1.2 栈的使用

|-----------------|-----------------------|
| 方法 | 功能 |
| Stack() | 构造一个空的栈 |
| E push(E e) | 将e入栈,并返回e |
| E pop() | 将栈顶元素出栈并返回 (有返回值) |
| E peek() | 获取栈顶元素 |
| int size() | 获取栈中有效元素个数 |
| boolean empty() | 检测栈是否为空 |

java 复制代码
public static void main(String[] args) {
        Stack<Integer> s = new Stack<>();
        s.push(1);
        s.push(2);
        s.push(3);
        s.push(4);
        System.out.println(s.size()); // 获取栈中有效元素个数---> 4
        System.out.println(s.peek()); // 获取栈顶元素---> 4
        s.pop(); // 4出栈,栈中剩余1 2 3,栈顶元素为3
        System.out.println(s.pop()); // 3出栈,栈中剩余1 2 栈顶元素为3
        if (s.empty()) {
            System.out.println("栈空");
        } else {
            System.out.println(s.size());
        }
    }

1.3 栈的模拟实现

从上图中可以看到,Stack继承了Vector,Vector和ArrayList类似,都是动态的顺序表,不同的是Vector是线程安全的

栈的模拟实现有两种:一种是数组实现,另一种是链表(单链表或者双链表)实现,不管是哪种,都得保证入栈 出栈操作的时间复杂度为O(1)

下面这个是数组模拟实现栈的方式:

java 复制代码
import java.util.Arrays;

//数组实现栈
public class MyStack {

    public int[] elem;//定义数组
    public int uesdSize;//记录当前数组的有效元素的个数,同时可以当作下标使用

    public static final int DEFAULT_CAPACITY = 10;//默认容量大小

    public MyStack() {
        this.elem = new int[DEFAULT_CAPACITY];
    }

    //判断栈是否满了
    public boolean isFull() {
        return uesdSize == elem.length;//这里不能写成DEFAULT_CAPACITY,DEFAULT_CAPACITY被final修饰不能变
    }
    //压栈 入栈
    public void push(int val) {
        if (isFull()) {
            this.elem = Arrays.copyOf(elem,2*elem.length);//扩容为原数组
        } else {
            elem[uesdSize++] = val;
        }
    }
    //判空
    public boolean isEmpty() {
        return uesdSize == 0;
    }
    //出栈
    public int pop() {
        if (isEmpty()) {
            throw new EmptyStackException("栈为空...");
        }
        int oldVal = elem[uesdSize-1];
        uesdSize--;
        elem[uesdSize] = 0;
        return oldVal;
    }
    //获取栈顶元素
    public int peek() {
        if (isEmpty()) {
            throw new EmptyStackException("栈为空...");
        }
        return elem[uesdSize-1];
    }
}

如果采用单向链表实现栈,那么为了保证入栈出栈的时间复杂度为O(1)

入栈只能采用头插法,尾插法需要遍历链表直到尾结点,这样就不满足时间复杂度为O(1)

出栈也只能采用头删法,可能大家会想用last来标记尾结点,从而不用遍历,但是这样在删除了一次以后,尾节点还得去遍历找前一个结点,还是不满足时间复杂度为O(1)
如果采用双向链表实现栈,那么头插尾插都是可以的


1.4 栈的应用场景

1. 改变元素的序列
  1. 若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是()

A: 1,4,3,2 B: 2,3,4,1 C: 3,1,4,2 D: 3,4,2,1

2.一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是( )。

A: 12345ABCDE B: EDCBA54321 C: ABCDE12345 D: 54321EDCBA

答:

1.由于栈的特性是先进后出,C选项中:当1,2,3都已经入栈后,3出栈,然后栈顶为2,不可能直接就让1进行出栈,所以错误

2.仍然考察的是栈的特性是先进后出,先进栈的元素最后出栈,那么也就是B

2. 将递归转化为循环

比如:逆序打印链表

java 复制代码
// 递归方式
    void printList(Node head){
        if(null != head){
            printList(head.next);
        System.out.print(head.val + " ");
        }
    }

这里循环的方式就类似上面的第二题,入栈元素出栈也就相当于逆序

java 复制代码
// 循环方式
    void printList(Node head){
        if(null == head){
            return;
        }
    Stack<Node> s = new Stack<>();
        // 将链表中的结点保存在栈中
        Node cur = head;
        while(null != cur){
            s.push(cur);
            cur = cur.next;
        }
        // 将栈中的元素出栈
        while(!s.empty()){
            System.out.print(s.pop().val + " ");
        }
    }
3. 括号匹配

首先思考一下为什么这个题需要用到栈这个数据结构,什么时候会用到这个数据结构?

一般和顺序有关的就需要考虑栈

这题的思路:

首先要明白这个题目不是偶数就一定是匹配的,eg:[( ] )

只要是左括号就入栈,遇到右括号就看是否匹配

以下三种情况是不匹配的:

(1)右括号不匹配 就直接返回false

(2)字符串还没遍历完成 但是栈是空的 此时也是不匹配 eg:())

(3)字符串遍历完了 但是栈不为空 此时也是不匹配 eg:()(

java 复制代码
class Solution {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        //遍历字符串
        for(int i=0;i<s.length();i++) {
            char ch = s.charAt(i);
            if(ch=='{'||ch=='['||ch == '(') {
                //左括号入栈
                stack.push(ch);
            } else {
                //右括号
                if(stack.isEmpty()) {
                    //栈为空
                    return false;
                } 
                //栈不为空,右括号判断匹配
                 char ch2 = stack.peek();
                 if(ch2=='{'&&ch=='}'||ch2=='['&&ch==']'||ch2=='('&&ch==')') {
                 stack.pop();
                 } else {
                    return false;
                 }
            }
        }
        //遍历完了,但是栈不为空
        if(!stack.isEmpty()) 
            return false;
        return true;

         //return stcak.isEmpty() 可以直接代替前三行
    }
}

注意

(1) Stack<Character> stack = new Stack<>();这里的类型为Character

(2) ch2为左括号,ch为右括号

(3)怎么判断匹配,一组一组符合即可


4. 逆波兰表达式求值

看这题之前,我们先来学习一下什么是前中后缀表达式,中缀表达式 转 后缀表达式 ,最后再来看怎么根据后缀表达式计算结果

(1)中缀表达式

操作符以中缀形式位于运算数中间(如:3+2),是我们日常通用的算术和逻辑公式表示方法

(2)后缀表达式

又称逆波兰式(Reverse Polish Notation - RPN),操作符以后缀形式位于两个运算数后(如:3+2的后缀表达形式就是3 2 +)

(3)前缀表达式:

又称波兰式(Polish Notation),操作符以前缀形式位于两个运算数前(如:3+2的前缀表达形式就是+ 3 2)
手工 如何将中缀表达式 转 后缀表达式?

以a+b*c+(d*e+f)*g为例,将其转为 后缀表达式

(1)按先加减后乘除的原则给表达式加括号,得到的就是 (a+(b*c) )+( ( (d*e)+f )*g )

(2)由内到外把括号去掉,并把运算符放在要去掉括号的后面,也就是 abc*+ de*f+ g* +

计算器的逻辑就是这样的,会把我们输入的带有括号的表达式转为不带括号的表达式,因为计算器也不知道括号是啥

在这里代码题考的最多的就是根据后缀表达式计算结果,那么思路是什么呢?

将后缀表达式中的数字依次入栈, 遇到运算数,就弹出栈顶的两个元素

第一个数字作为右操作数,第二个数作为左操作数,然后把 数字2 运算数 数字1 计算得到的结果入栈 (这个顺序不能改变)

然后继续这个过程,直到栈中只剩下最后一个元素,直接返回即可

代码实现:

java 复制代码
class Solution {
    public int evalRPN(String[] tokens) {
        Stack<Integer> stack = new Stack<>();
        for(int i=0;i<tokens.length;i++) {
            String str = tokens[i];
           if(!isOperatons(str)) {
               //不是运算符,也就是数字
               //将字符串转为数字
               int val = Integer.valueOf(str);
               //将数字入栈
               stack.push(val);
           } else {
               //是运算符
                  //弹除两个栈顶元素,第一个为右操作数
               int num2 = stack.pop();
               int num1 = stack.pop();
                  //计算
               switch(str) {
                   case "+":
                        stack.push(num1+num2);
                        break;
                    case "-":
                        stack.push(num1-num2);
                        break; 
                   case "*":
                        stack.push(num1*num2);
                        break; 
                   case "/":
                        stack.push(num1/num2);
                        break;
               }
           }
        }
        return stack.pop();
    }
    //判断这个字符串是不是一个运算符
    private boolean isOperatons(String str) {
        if(str.equals("+")||str.equals("-")||str.equals("*")||str.equals("/")) {
            return true;
        } else {
            return false;
        }
    }
}

注意:

(1)入栈需要把字符串变为数字 int val = Integer.valueOf(str);

(2)弹除两个栈顶元素,第一个为右操作数,第二个为左操作数

5. 出栈入栈次序匹配

思路:

(1)遍历pushV数组 ,把pushV数组的元素放到栈当中

(2)每次放一个元素,就得看和popV的元素是否一样

(3)如果不一样,i++ 一样的话,j++,并将栈顶元素弹出(i是遍历pushA数组的,j是遍历popA数组的)

直到 遍历完popV 结束

如下图 当pushV栈顶元素和popV[j]一样,我们是需要将pushA的栈顶元素出栈的,不然无法判断下一个元素是否相等

java 复制代码
public class Solution {
    public boolean IsPopOrder (int[] pushV, int[] popV) {
        Stack<Integer> stack = new Stack();
        int j =0;
        for(int i=0;i<pushV.length;i++) {
            stack.push(pushV[i]);
            //如果pushV栈顶元素和popV[j]一样
            while(!stack.isEmpty()&&j<popV.length&&stack.peek()==popV[j]) {
                j++;
                stack.pop();
            }
        }
        if(j<popV.length) {
            return false;
        }
        return true;

        //return j == popV.length;  //这里行可以代替前三行
        //return stack.isEmpty;   //或者这样写也行
    }
}

注意:当pushV栈顶元素和popV[j]一样时,可能存在 j下标越界 , 栈被弹空了的情况,所以需要特别考虑

6. 最小栈

思路:

这题一个栈无法得到最小元素的(如果最小元素不在栈顶,那么时间复杂度就不满足O(1),违背了题目条件),那么就考虑用两个栈

(1)普通栈Stack用来存储数据 , 最小栈minStack用来存最小元素

(2)普通栈一定要存有元素

(3)最小栈 如果是第一次存放数据 直接放 ,否则需要和最小栈的栈顶元素去比较 <=的时候才存入(这里特别注意一下=的时候,看图解释:这个时候如果右边的-3不放,当普通栈pop,最小栈也pop,那么最小值就不会是-3,而是-2,这显然不符合)

java 复制代码
class MinStack {
    Stack<Integer> stack;
    Stack<Integer> minStack;
    //构造方法:初始化两个栈
    public MinStack() {
        stack = new Stack<>();
        minStack = new Stack<>();
    }
    
    public void push(int val) {
        stack.push(val);
        //如果第一次放(也就是minStack为空),直接放即可
        if(minStack.isEmpty()) {
            minStack.push(val);
        } else {
            //不是第一次放,那就只有val<= minStack栈顶元素才可以放
            if(val<= minStack.peek()) {
                minStack.push(val);
            }
        }
    }
    
    public void pop() {
        //根据题目不用考虑空栈
           int val = stack.pop();
           //如果普通栈pop出的元素就是最小,那么minStack也需要pop
           if(minStack.peek()==val) 
           {
               minStack.pop();
           }
        
        
    }
    //获取栈顶元素
    public int top() {
        return stack.peek();
    }
    //获取最小值
    public int getMin() {
        return minStack.peek();
    }
}

1.5 概念区分

栈、虚拟机栈、栈帧有什么区别呢?

栈:一种先进后出的数据结构

虚拟机栈:JVM的一块内存

栈帧:调用方法时,给方法开辟的一块内存


本次内容就到此啦,欢迎评论区或者私信交流,觉得笔者写的还可以,或者自己有些许收获的,麻烦铁汁们动动小手,给俺来个一键三连,万分感谢 !

相关推荐
木卫二号Coding2 分钟前
affine+docker+postgresql+备份数据库
数据库·docker·容器
月明长歌4 分钟前
【码道初阶】【LeetCode 102】二叉树层序遍历:如何利用队列实现“一层一层切蛋糕”?
java·数据结构·算法·leetcode·职场和发展·队列
codingPower6 分钟前
制作ftl文件通过FreeMarke生成PDF文件(含图片处理)
java·开发语言·pdf
R.lin8 分钟前
Spring AI Alibaba 1.1 正式发布!
java·后端·spring
云和数据.ChenGuang10 分钟前
openEuler系统下安装MongoDB的技术教程
运维·数据库·mongodb·压力测试·运维工程师·运维技术
檀越剑指大厂10 分钟前
查看 Docker 镜像详情的几种常用方法
docker·容器·eureka
星诺算法备案15 分钟前
读懂大模型备案流程,开启技术安全应用新征程
人工智能·算法·推荐算法·备案
广东大榕树信息科技有限公司15 分钟前
如何实现动环监控系统的国产化与智能化?
运维·网络·物联网·国产动环监控系统·动环监控系统
程序员阿明19 分钟前
spring security 6的知识点总结
java·后端·spring
Loo国昌19 分钟前
大型语言模型推理范式演进:从提示工程到思维算法
人工智能·算法·语言模型·自然语言处理