对相机位姿 导出 Tum 格式的位姿

需求:针对 [N,4,4] 格式的 poses np.darray 导出其 Tum 格式 的位姿。

时间戳根据 N 的值,线性得到。

python 复制代码
import numpy as np
import os
import torch
from scipy.spatial.transform import Rotation

def rotation_matrix_to_tum_format(rotation_matrix):
    rotation = Rotation.from_matrix(rotation_matrix)
    quaternion = rotation.as_quat()
    return quaternion

def convert_to_tum_format(poses, timestamps):
    tum_poses = []
    for i in range(poses.shape[0]):
        pose = poses[i]
        quaternion = rotation_matrix_to_tum_format(pose[:3, :3])
        tum_timestamp = timestamps[i] * 0.1  # Scaling factor of 0.1 to convert timestamps to seconds
        tum_pose = f"{tum_timestamp:.6f} {' '.join(map(str, pose[:3, 3]))} {' '.join(map(str, quaternion))}" 
        tum_poses.append(tum_pose)
    return tum_poses
def write_tum_poses_to_file(file_path, tum_poses):
    with open(file_path, 'w') as f:
        for pose in tum_poses:
            f.write(pose + '\n')
def convert_and_write_tum_poses(c2w_variable, output_filename, timestamps):
    # 调用适当的函数将变量转换为 TUM 格式
    tum_poses = convert_to_tum_format(c2w_variable, timestamps)
    
    # 将 TUM 格式的位姿写入文件
    write_tum_poses_to_file(output_filename, tum_poses)
n_poses = c2w_GT_traj.shape[0]
custom_timestamps = np.arange(n_poses)
convert_and_write_tum_poses(c2w_GT_traj, 'tum_c2w_GT_traj.txt', custom_timestamps)
相关推荐
聆风吟º8 分钟前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º3 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys3 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56783 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能4 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144874 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile4 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5774 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert