光条中心线提取-Steger算法 [OpenCV]

在线结构光视觉传感器中,由线激光器发射出的线结构光,在本质上为一个连续且具有一定厚度的空间光平面,而在目标表面上所形成的具有一定宽度的光条特征,即为该光平面与目标表面相交而成的交线。在该空间光平面的厚度方向上,光强近似服从高斯分布,因而在摄像机采集到的光条图像中,在沿着光条宽度的方向或光条的法线方向上,其灰度也会呈现出类似的高斯分布特点,即光条中心的灰度值大而光条边缘的灰度值小,如图1所示,因而光条中心线的提取任务就是要找到图像中的光条灰度的高斯分布中心。

采用结构光进行扫描检测时,需要提取激光条纹的中心线,本文采用经典的Steger算法提取光条中心。

Steger算法原理

Steger算法基于Hessian矩阵,能够实现光条中心亚像素精度定位:首先通过Hessian矩阵能够得到光条的法线方向,然后在法线方向利用泰勒展开得到亚像素位置。

对于图像中激光条纹上的任意一点(x,y)(x,y),Hessian矩阵可以表示为:

cpp 复制代码
void StegerLine()
{ 
    Mat img0 = imread("image_0.png", 1);
    Mat img;
    cvtColor(img0, img0, CV_BGR2GRAY);
    img = img0.clone();

    //高斯滤波
    img.convertTo(img, CV_32FC1);
    GaussianBlur(img, img, Size(0, 0), 6, 6);

    //一阶偏导数
    Mat m1, m2;
    m1 = (Mat_<float>(1, 2) << 1, -1);  //x偏导
    m2 = (Mat_<float>(2, 1) << 1, -1);  //y偏导

    Mat dx, dy;
    filter2D(img, dx, CV_32FC1, m1);
    filter2D(img, dy, CV_32FC1, m2);

    //二阶偏导数
    Mat m3, m4, m5;
    m3 = (Mat_<float>(1, 3) << 1, -2, 1);   //二阶x偏导
    m4 = (Mat_<float>(3, 1) << 1, -2, 1);   //二阶y偏导
    m5 = (Mat_<float>(2, 2) << 1, -1, -1, 1);   //二阶xy偏导

    Mat dxx, dyy, dxy;
    filter2D(img, dxx, CV_32FC1, m3);
    filter2D(img, dyy, CV_32FC1, m4);
    filter2D(img, dxy, CV_32FC1, m5);

    //hessian矩阵
    double maxD = -1;
    int imgcol = img.cols;
    int imgrow = img.rows;
    vector<double> Pt;
    for (int i=0;i<imgcol;i++)
    {
        for (int j=0;j<imgrow;j++)
        {
            if (img0.at<uchar>(j,i)>200)
            {
                Mat hessian(2, 2, CV_32FC1);
                hessian.at<float>(0, 0) = dxx.at<float>(j, i);
                hessian.at<float>(0, 1) = dxy.at<float>(j, i);
                hessian.at<float>(1, 0) = dxy.at<float>(j, i);
                hessian.at<float>(1, 1) = dyy.at<float>(j, i);

                Mat eValue;
                Mat eVectors;
                eigen(hessian, eValue, eVectors);

                double nx, ny;
                double fmaxD = 0;
                if (fabs(eValue.at<float>(0,0))>= fabs(eValue.at<float>(1,0)))  //求特征值最大时对应的特征向量
                {
                    nx = eVectors.at<float>(0, 0);
                    ny = eVectors.at<float>(0, 1);
                    fmaxD = eValue.at<float>(0, 0);
                }
                else
                {
                    nx = eVectors.at<float>(1, 0);
                    ny = eVectors.at<float>(1, 1);
                    fmaxD = eValue.at<float>(1, 0);
                }

                double t = -(nx*dx.at<float>(j, i) + ny*dy.at<float>(j, i)) / (nx*nx*dxx.at<float>(j,i)+2*nx*ny*dxy.at<float>(j,i)+ny*ny*dyy.at<float>(j,i));

                if (fabs(t*nx)<=0.5 && fabs(t*ny)<=0.5)
                {
                    Pt.push_back(i);
                    Pt.push_back(j);
                }
            }
        }
    }

    for (int k = 0;k<Pt.size()/2;k++)
    {
        Point rpt;
        rpt.x = Pt[2 * k + 0];
        rpt.y = Pt[2 * k + 1];
        circle(img0, rpt, 1, Scalar(0, 0, 255));
    }

    imshow("result", img0);
    waitKey(0);
}

https://blog.csdn.net/CharmsLUO/article/details/122312450

相关推荐
TMT星球3 分钟前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
AI视觉网奇17 分钟前
图生3d算法学习笔记
人工智能
天乐敲代码18 分钟前
JAVASE入门九脚-集合框架ArrayList,LinkedList,HashSet,TreeSet,迭代
java·开发语言·算法
十年一梦实验室22 分钟前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
Kent_J_Truman23 分钟前
【子矩阵——优先队列】
算法
小锋学长生活大爆炸25 分钟前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
佛州小李哥1 小时前
在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
鸭鸭鸭进京赶烤1 小时前
计算机工程:解锁未来科技之门!
人工智能·科技·opencv·ai·机器人·硬件工程·软件工程
ModelWhale1 小时前
十年筑梦,再创鲸彩!庆祝和鲸科技十周年
人工智能·科技
啊波次得饿佛哥1 小时前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络