光条中心线提取-Steger算法 [OpenCV]

在线结构光视觉传感器中,由线激光器发射出的线结构光,在本质上为一个连续且具有一定厚度的空间光平面,而在目标表面上所形成的具有一定宽度的光条特征,即为该光平面与目标表面相交而成的交线。在该空间光平面的厚度方向上,光强近似服从高斯分布,因而在摄像机采集到的光条图像中,在沿着光条宽度的方向或光条的法线方向上,其灰度也会呈现出类似的高斯分布特点,即光条中心的灰度值大而光条边缘的灰度值小,如图1所示,因而光条中心线的提取任务就是要找到图像中的光条灰度的高斯分布中心。

采用结构光进行扫描检测时,需要提取激光条纹的中心线,本文采用经典的Steger算法提取光条中心。

Steger算法原理

Steger算法基于Hessian矩阵,能够实现光条中心亚像素精度定位:首先通过Hessian矩阵能够得到光条的法线方向,然后在法线方向利用泰勒展开得到亚像素位置。

对于图像中激光条纹上的任意一点(x,y)(x,y),Hessian矩阵可以表示为:

cpp 复制代码
void StegerLine()
{ 
    Mat img0 = imread("image_0.png", 1);
    Mat img;
    cvtColor(img0, img0, CV_BGR2GRAY);
    img = img0.clone();

    //高斯滤波
    img.convertTo(img, CV_32FC1);
    GaussianBlur(img, img, Size(0, 0), 6, 6);

    //一阶偏导数
    Mat m1, m2;
    m1 = (Mat_<float>(1, 2) << 1, -1);  //x偏导
    m2 = (Mat_<float>(2, 1) << 1, -1);  //y偏导

    Mat dx, dy;
    filter2D(img, dx, CV_32FC1, m1);
    filter2D(img, dy, CV_32FC1, m2);

    //二阶偏导数
    Mat m3, m4, m5;
    m3 = (Mat_<float>(1, 3) << 1, -2, 1);   //二阶x偏导
    m4 = (Mat_<float>(3, 1) << 1, -2, 1);   //二阶y偏导
    m5 = (Mat_<float>(2, 2) << 1, -1, -1, 1);   //二阶xy偏导

    Mat dxx, dyy, dxy;
    filter2D(img, dxx, CV_32FC1, m3);
    filter2D(img, dyy, CV_32FC1, m4);
    filter2D(img, dxy, CV_32FC1, m5);

    //hessian矩阵
    double maxD = -1;
    int imgcol = img.cols;
    int imgrow = img.rows;
    vector<double> Pt;
    for (int i=0;i<imgcol;i++)
    {
        for (int j=0;j<imgrow;j++)
        {
            if (img0.at<uchar>(j,i)>200)
            {
                Mat hessian(2, 2, CV_32FC1);
                hessian.at<float>(0, 0) = dxx.at<float>(j, i);
                hessian.at<float>(0, 1) = dxy.at<float>(j, i);
                hessian.at<float>(1, 0) = dxy.at<float>(j, i);
                hessian.at<float>(1, 1) = dyy.at<float>(j, i);

                Mat eValue;
                Mat eVectors;
                eigen(hessian, eValue, eVectors);

                double nx, ny;
                double fmaxD = 0;
                if (fabs(eValue.at<float>(0,0))>= fabs(eValue.at<float>(1,0)))  //求特征值最大时对应的特征向量
                {
                    nx = eVectors.at<float>(0, 0);
                    ny = eVectors.at<float>(0, 1);
                    fmaxD = eValue.at<float>(0, 0);
                }
                else
                {
                    nx = eVectors.at<float>(1, 0);
                    ny = eVectors.at<float>(1, 1);
                    fmaxD = eValue.at<float>(1, 0);
                }

                double t = -(nx*dx.at<float>(j, i) + ny*dy.at<float>(j, i)) / (nx*nx*dxx.at<float>(j,i)+2*nx*ny*dxy.at<float>(j,i)+ny*ny*dyy.at<float>(j,i));

                if (fabs(t*nx)<=0.5 && fabs(t*ny)<=0.5)
                {
                    Pt.push_back(i);
                    Pt.push_back(j);
                }
            }
        }
    }

    for (int k = 0;k<Pt.size()/2;k++)
    {
        Point rpt;
        rpt.x = Pt[2 * k + 0];
        rpt.y = Pt[2 * k + 1];
        circle(img0, rpt, 1, Scalar(0, 0, 255));
    }

    imshow("result", img0);
    waitKey(0);
}

https://blog.csdn.net/CharmsLUO/article/details/122312450

相关推荐
兆。9 分钟前
python全栈-人工智能基础-机器学习
人工智能·python·机器学习
RTC老炮10 分钟前
webrtc降噪-WienerFilter源码分析与算法原理
算法·webrtc
魔镜前的帅比17 分钟前
Few-shot / Chain-of-Thought 提示技巧
人工智能·chatgpt
深度学习lover27 分钟前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
滨HI028 分钟前
圆卡尺,建坐标系,拟合圆,高斯滤波,双边滤波
图像处理·opencv·计算机视觉
Coovally AI模型快速验证31 分钟前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
hweiyu0040 分钟前
数据结构:数组
数据结构·算法
不老刘1 小时前
新一代图像生成工具:Nano Banana Pro 带来更自然的创作体验
人工智能·google·gemini·nano banana pro
无限进步_1 小时前
C语言单向链表实现详解:从基础操作到完整测试
c语言·开发语言·数据结构·c++·算法·链表·visual studio
初夏睡觉1 小时前
循环比赛日程表 题解
数据结构·c++·算法