22 3GPP在SHF频段基于中继的5G高速列车场景中的标准化

文章目录

RRH:remote radio head 远程无线头
HTS:high speed train 高速移动列车

信道模型

  1. 考虑搭配RRH和车载中继站之间的LOS路径以及各种环境(开放或峡谷),在本次实验场景中选择K=7 / 13.3dB,信道设计选择TDL-D、CDL-D模型
  2. ASD ASA ZSA ZSD :出发、到达方位角扩展,到达和出发的天顶角扩展{5,5,1,1} {5,15,5,1}
  3. RRH 和车载中继高度为2.5米,最大减少功率表损耗并减小列车波束覆盖范围
  4. 需调整CDL-D模型中的ZoD ZoA去反映RRH和中继的水平高度
  5. AoA、AoD、ZoA、ZoD 的描述:
  6. ASA :x-y 平面的顶视图

实验

μ

  1. 参数

    • 速度 500Km/h
    • 载波频率:30GHz

    F s F_s Fs:子载波间隔
    B B B:带宽
    N N N:FFT大小
    N s N_s Ns:使用子载波数量
    T s T_s Ts:OFDM符号长度
    T C P 1 T_{CP1} TCP1:第一个符号的CP长度 T C P 2 T_{CP2} TCP2:剩余符号的CP长度`

    • SISO传输 TDL-D模型
    • 相位噪声模型,采用多极点/零相位
  2. 结果图:不同子载波间隔和MCS的频谱效率与SNR之间的关系

  3. 结论

    • 较小的子载波间隔和较高的MCS会降低频谱效率
    • 大的子载波间隔在大多数情况下可以获得满意的频率效率

参考信号

  1. 原因:只分配前载DMRS,在多普勒频移比较高的场景中会降低系统性能,所以需要在连续前载DMRS后面分配额外的DMRS,去获得更准确的信道信息;增加时域密度会导致较高的DMRS开销,从而降低频谱效率,所以为了减少DMRS开销,可以降低DMRS频域密度,由于RRH和列车之间的散射体少,因此在频域中分配稀疏DMRS造成性能损失较少。

  2. DMRS分配情况

  3. 实验参数

    信道估计:线性插值 LS

    接收器处采用最小均方误差(MMSE),补偿由多普勒频移引起的相位误差和频偏

    信道模型:CDL-D K=13.3

    天线配置: ( M , N , P , M g , N g ) = ( 8 , 8 , 2 , 1 , 1 )( d V , d H ) = ( 0.5 , 0.5 ) λ (M,N,P,Mg,Ng)=(8,8,2,1,1) (dV,dH)=(0.5,0.5)\lambda (M,N,P,Mg,Ng)=(8,8,2,1,1)(dV,dH)=(0.5,0.5)λ

  4. 结果图:不同DMRS模式的频谱效率与SNR的函数关系

  5. 结论:

    DMRS密度变化能改善频谱效率

初始接入方法

省略

波形比较

省略

参考文献: 3GPP standardization activities in relay based 5G high speed train scenarios for the SHF band

相关推荐
小2不语1 天前
Huawei H151-370 5G CPE 5 SE Review
5g·华为
AORO_BEIDOU1 天前
防爆平板:工业数字化转型的战略支点与低碳革命先锋
网络·5g·电脑·信息与通信
全栈工程师修炼日记2 天前
无线通信技术(二):ITU、3GPP及传统波段对无线频谱的划分
5g·无线通信·3gpp·itu
王伯爵2 天前
N78频段
5g
王伯爵3 天前
5G核心网(5GC)中PCC(Policy and Charging Control,策略与计费控制)
服务器·网络·5g
王伯爵3 天前
5G核心网(5GC)中5QI(5G QoS Identifier)
网络·5g
王伯爵3 天前
5G网络中CPE和ACS
网络·5g
王伯爵4 天前
5G核心网(5GC)中PCI(Physical Cell Identifier,物理小区标识)
5g
王伯爵4 天前
5G网络中A端口和Z端口
网络·5g·php
王伯爵5 天前
5G核心网(5GC)中TDD(时分双工)和FDD(频分双工)
5g·tdd