hive中map相关函数总结

目录

hive官方函数解释

hive官网函数大全地址:hive官网函数大全地址

Return Type Name Description
map map(key1, value1, key2, value2, ...) Creates a map with the given key/value pairs.
array map_values(Map<K.V>) Returns an unordered array containing the values of the input map.
array map_keys(Map<K.V>) Returns an unordered array containing the keys of the input map.
map<string,string> str_to_map(text[, delimiter1, delimiter2]) Splits text into key-value pairs using two delimiters. Delimiter1 separates text into K-V pairs, and Delimiter2 splits each K-V pair. Default delimiters are ',' for delimiter1 and ':' for delimiter2.
Tkey,Tvalue explode(MAP<Tkey,Tvalue> m) Explodes a map to multiple rows. Returns a row-set with a two columns (key,value) , one row for each key-value pair from the input map. (As of Hive 0.8.0.).

示例

1、map(key1, value1, key2, value2, ...)

sql 复制代码
SELECT map('name', '张三', 'age', 20, 'gender', '男') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

2、map_values(Map<K.V>)

sql 复制代码
SELECT map_keys(map('name', '张三', 'age', 20, 'gender', '男')) AS keys;
---结果:
keys
["name","age","gender"]

3、map_values(Map<K.V>)

sql 复制代码
SELECT map_values(map('name', '张三', 'age', 20, 'gender', '男')) AS values;
---结果:
values	
["张三","20","男"]

4、str_to_map(str, delimiter1, delimiter2)

str_to_map 函数用于将一个字符串转换为 Map 对象。具体来说,str_to_map 函数会将一个由键值对组成的字符串解析成一个 Map 对象,其中键和值之间使用指定的分隔符进行分隔。其中,str 是要转换的字符串,delimiter1 是键值对之间的分隔符,delimiter2 是键和值之间的分隔符。默认情况下,delimiter1 的值是 ',',delimiter2 的值是 ':'。

sql 复制代码
SELECT str_to_map('name:张三,age:20,gender:男', ',', ':') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

SELECT str_to_map('name=张三,age=20,gender=男', ',', '=') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

5、explode (map)

sql 复制代码
select explode(map('A',10,'B',20,'C',30));
select explode(map('A',10,'B',20,'C',30)) as (key,value);
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf;
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf as key,value;
---上述四个结果均为:
key     value
A       10	
B       20	
C       30

实战

给出一组学生数据,有名字,课程,等级,分数等字段,现在求每门课的情况,包含平均成绩,及这门课包含哪些学生及学生的等级

sql 复制代码
with stud as
( select  'zhang3' as name ,'优' as grade  ,'math' as course ,'88' as score  
  union all 
  select  'li4' as name ,'良' as grade  ,'math' as course ,'72' as score
    union all 
  select  'zhao6' as name ,'差' as grade  ,'math' as course ,'44' as score
    union all 
  select  'wang5' as name ,'优' as grade  ,'chinese' as course ,'80' as score
    union all 
  select  'zhao6' as name ,'优' as grade  ,'chinese' as course ,'55' as score
    union all 
  select  'tian7' as name ,'优' as grade  ,'chinese' as course ,'75' as score
)

--sql1
select course, collect_set(concat(name,':',grade)) as collect , avg(score) from stud group by course;
---结果:
course             collect                                             avg(score)	
math        ["li4:良","zhao6:差","zhang3:优"]                           68.0
chinese     ["wang5:优","tian7:优","zhao6:优"]                          70.0
----sql2
select course, concat_ws(',',collect_set(concat(name,':',grade))) as strings , avg(score) from stud group by course;
---结果:
course                      strings                                        avg(score)
math             li4:良,zhao6:差,zhang3:优                                  68.0
chinese          wang5:优,tian7:优,zhao6:优                                 70.0
----sql3
select course, str_to_map(concat_ws(',',collect_set(concat(name,':',grade))),',',':') as maps , avg(score) from stud group by course;
---结果:
course                               maps                              avg(score)	
math                 {"li4":"良","zhang3":"优","zhao6":"差"}             68.0
chinese              {"tian7":"优","wang5":"优","zhao6":"优"}            70.0

注意:

第一种sql,collect 字段的类型是array;第二种sql,strings字段的类型是string;第三种sql,maps字段的类型是map;

问题来了,能否在第二种的基础上,实现第一种和第三种的结果,且字段类型是string;

下面实现第二种转化为第三种,实际上就是map格式转换成json字符串;

sql 复制代码
with stud as
( select  'zhang3' as name ,'优' as grade  ,'math' as course ,'88' as score  
  union all 
  select  'li4' as name ,'良' as grade  ,'math' as course ,'72' as score
    union all 
  select  'zhao6' as name ,'差' as grade  ,'math' as course ,'44' as score
    union all 
  select  'wang5' as name ,'优' as grade  ,'chinese' as course ,'80' as score
    union all 
  select  'zhao6' as name ,'优' as grade  ,'chinese' as course ,'55' as score
    union all 
  select  'tian7' as name ,'优' as grade  ,'chinese' as course ,'75' as score
)

select 
course
,concat('{"',string2,'"}') as string3
from  
(select 
course
,regexp_replace(string1,'\\,','\\"\\,\\"') as string2
from  
(
select 
    course,
    concat_ws(',', collect_list(concat_ws('":"', k,v) ) ) as string1
from (
select course, str_to_map(concat_ws(',',collect_set(concat(name,':',grade))),',',':') as maps , avg(score) 
from stud group by course
)test_map_1
lateral view outer explode(maps) kv as k,v
group by course
) tt 
) tm 

---结果:
course                               string3                            	
math                 {"li4":"良","zhang3":"优","zhao6":"差"}           
chinese              {"tian7":"优","wang5":"优","zhao6":"优"}        
相关推荐
计艺回忆路2 小时前
Hive自定义函数(UDF)开发和应用流程
hive·自定义函数·udf
万能小锦鲤16 小时前
《大数据技术原理与应用》实验报告三 熟悉HBase常用操作
java·hadoop·eclipse·hbase·shell·vmware·实验报告
天翼云开发者社区1 天前
数据治理的长效机制
大数据·数据仓库
王小王-1231 天前
基于Hadoop与LightFM的美妆推荐系统设计与实现
大数据·hive·hadoop·大数据美妆推荐系统·美妆商品用户行为·美妆电商
一切顺势而行1 天前
hadoop 集群问题处理
大数据·hadoop·分布式
万能小锦鲤2 天前
《大数据技术原理与应用》实验报告七 熟悉 Spark 初级编程实践
hive·hadoop·ubuntu·flink·spark·vmware·实验报告
项目題供诗2 天前
Hadoop(二)
大数据·hadoop·分布式
Leo.yuan2 天前
ETL还是ELT,大数据处理怎么选更靠谱?
大数据·数据库·数据仓库·信息可视化·etl
万能小锦鲤2 天前
《大数据技术原理与应用》实验报告五 熟悉 Hive 的基本操作
hive·hadoop·ubuntu·eclipse·vmware·实验报告·hiveql
張萠飛2 天前
flink sql如何对hive string类型的时间戳进行排序
hive·sql·flink