hive中map相关函数总结

目录

hive官方函数解释

hive官网函数大全地址:hive官网函数大全地址

Return Type Name Description
map map(key1, value1, key2, value2, ...) Creates a map with the given key/value pairs.
array map_values(Map<K.V>) Returns an unordered array containing the values of the input map.
array map_keys(Map<K.V>) Returns an unordered array containing the keys of the input map.
map<string,string> str_to_map(text[, delimiter1, delimiter2]) Splits text into key-value pairs using two delimiters. Delimiter1 separates text into K-V pairs, and Delimiter2 splits each K-V pair. Default delimiters are ',' for delimiter1 and ':' for delimiter2.
Tkey,Tvalue explode(MAP<Tkey,Tvalue> m) Explodes a map to multiple rows. Returns a row-set with a two columns (key,value) , one row for each key-value pair from the input map. (As of Hive 0.8.0.).

示例

1、map(key1, value1, key2, value2, ...)

sql 复制代码
SELECT map('name', '张三', 'age', 20, 'gender', '男') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

2、map_values(Map<K.V>)

sql 复制代码
SELECT map_keys(map('name', '张三', 'age', 20, 'gender', '男')) AS keys;
---结果:
keys
["name","age","gender"]

3、map_values(Map<K.V>)

sql 复制代码
SELECT map_values(map('name', '张三', 'age', 20, 'gender', '男')) AS values;
---结果:
values	
["张三","20","男"]

4、str_to_map(str, delimiter1, delimiter2)

str_to_map 函数用于将一个字符串转换为 Map 对象。具体来说,str_to_map 函数会将一个由键值对组成的字符串解析成一个 Map 对象,其中键和值之间使用指定的分隔符进行分隔。其中,str 是要转换的字符串,delimiter1 是键值对之间的分隔符,delimiter2 是键和值之间的分隔符。默认情况下,delimiter1 的值是 ',',delimiter2 的值是 ':'。

sql 复制代码
SELECT str_to_map('name:张三,age:20,gender:男', ',', ':') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

SELECT str_to_map('name=张三,age=20,gender=男', ',', '=') AS student;
---结果:
student	
{"age":"20","gender":"男","name":"张三"}

5、explode (map)

sql 复制代码
select explode(map('A',10,'B',20,'C',30));
select explode(map('A',10,'B',20,'C',30)) as (key,value);
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf;
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf as key,value;
---上述四个结果均为:
key     value
A       10	
B       20	
C       30

实战

给出一组学生数据,有名字,课程,等级,分数等字段,现在求每门课的情况,包含平均成绩,及这门课包含哪些学生及学生的等级

sql 复制代码
with stud as
( select  'zhang3' as name ,'优' as grade  ,'math' as course ,'88' as score  
  union all 
  select  'li4' as name ,'良' as grade  ,'math' as course ,'72' as score
    union all 
  select  'zhao6' as name ,'差' as grade  ,'math' as course ,'44' as score
    union all 
  select  'wang5' as name ,'优' as grade  ,'chinese' as course ,'80' as score
    union all 
  select  'zhao6' as name ,'优' as grade  ,'chinese' as course ,'55' as score
    union all 
  select  'tian7' as name ,'优' as grade  ,'chinese' as course ,'75' as score
)

--sql1
select course, collect_set(concat(name,':',grade)) as collect , avg(score) from stud group by course;
---结果:
course             collect                                             avg(score)	
math        ["li4:良","zhao6:差","zhang3:优"]                           68.0
chinese     ["wang5:优","tian7:优","zhao6:优"]                          70.0
----sql2
select course, concat_ws(',',collect_set(concat(name,':',grade))) as strings , avg(score) from stud group by course;
---结果:
course                      strings                                        avg(score)
math             li4:良,zhao6:差,zhang3:优                                  68.0
chinese          wang5:优,tian7:优,zhao6:优                                 70.0
----sql3
select course, str_to_map(concat_ws(',',collect_set(concat(name,':',grade))),',',':') as maps , avg(score) from stud group by course;
---结果:
course                               maps                              avg(score)	
math                 {"li4":"良","zhang3":"优","zhao6":"差"}             68.0
chinese              {"tian7":"优","wang5":"优","zhao6":"优"}            70.0

注意:

第一种sql,collect 字段的类型是array;第二种sql,strings字段的类型是string;第三种sql,maps字段的类型是map;

问题来了,能否在第二种的基础上,实现第一种和第三种的结果,且字段类型是string;

下面实现第二种转化为第三种,实际上就是map格式转换成json字符串;

sql 复制代码
with stud as
( select  'zhang3' as name ,'优' as grade  ,'math' as course ,'88' as score  
  union all 
  select  'li4' as name ,'良' as grade  ,'math' as course ,'72' as score
    union all 
  select  'zhao6' as name ,'差' as grade  ,'math' as course ,'44' as score
    union all 
  select  'wang5' as name ,'优' as grade  ,'chinese' as course ,'80' as score
    union all 
  select  'zhao6' as name ,'优' as grade  ,'chinese' as course ,'55' as score
    union all 
  select  'tian7' as name ,'优' as grade  ,'chinese' as course ,'75' as score
)

select 
course
,concat('{"',string2,'"}') as string3
from  
(select 
course
,regexp_replace(string1,'\\,','\\"\\,\\"') as string2
from  
(
select 
    course,
    concat_ws(',', collect_list(concat_ws('":"', k,v) ) ) as string1
from (
select course, str_to_map(concat_ws(',',collect_set(concat(name,':',grade))),',',':') as maps , avg(score) 
from stud group by course
)test_map_1
lateral view outer explode(maps) kv as k,v
group by course
) tt 
) tm 

---结果:
course                               string3                            	
math                 {"li4":"良","zhang3":"优","zhao6":"差"}           
chinese              {"tian7":"优","wang5":"优","zhao6":"优"}        
相关推荐
墨染丶eye11 小时前
数据仓库项目启动与管理
大数据·数据仓库·spark
一个天蝎座 白勺 程序猿13 小时前
大数据(4.5)Hive聚合函数深度解析:从基础统计到多维聚合的12个生产级技巧
大数据·hive·hadoop
浩浩kids16 小时前
Hadoop•踩过的SHIT
大数据·hadoop·分布式
weixin_3077791321 小时前
C#实现HiveQL建表语句中特殊数据类型的包裹
开发语言·数据仓库·hive·c#
一个天蝎座 白勺 程序猿1 天前
大数据(4.2)Hive核心操作实战指南:表创建、数据加载与分区/分桶设计深度解析
大数据·hive·hadoop
一个天蝎座 白勺 程序猿1 天前
大数据(4.3)Hive基础查询完全指南:从SELECT到复杂查询的10大核心技巧
数据仓库·hive·hadoop
weixin_307779131 天前
判断HiveQL语句为建表语句的识别函数
开发语言·数据仓库·hive·c#
酷爱码1 天前
hive相关面试题以及答案
hive·分布式
zhangjin12222 天前
kettle从入门到精通 第九十四课 ETL之kettle MySQL Bulk Loader大批量高性能数据写入
大数据·数据仓库·mysql·etl·kettle实战·kettlel批量插入·kettle mysql
宅小海2 天前
14 配置Hadoop集群-配置历史和日志服务
linux·服务器·hadoop