信息论安全与概率论

目录

[一. Markov不等式](#一. Markov不等式)

[二. 选择引理](#二. 选择引理)

[三. Chebyshev不等式](#三. Chebyshev不等式)

[四. Chernov上限](#四. Chernov上限)

[4.1 变量大于](#4.1 变量大于)

[4.2 变量小于](#4.2 变量小于)


信息论安全中会用到很多概率论相关的上界,本文章将梳理几个论文中常用的定理,重点关注如何理解这些定理以及怎么用。

一. Markov不等式

假定X为非负且为实数的随机变量,令为该变量的数学期望,可得:

理解:代表事件的集合,该定理用来描述概率的上界,且该上界与数学期望相关。

二. 选择引理

,左边的代表随机变量,右边代表该随机变量取值的字母集。假定某函数,将这些函数集中在一起形成函数集,另外该函数集内函数的个数与n无关。给定如下条件:

一定存在该变量中一个具体的数,满足:

理解:如果经过函数变化后的随机变量的数学期望有上界,那么该函数的某些取值也有上界。

证明:

先做一个简单的改写,令,可以把看成一个常数,根据联合界定理(union bound),来看一个很有意思的概率:

马上使用刚才谈到的Markov不等式,右边不就是某个变量大于某个数的概率,可得:

条件告诉我们:

直接带入可得:

推导这么久,无非是想说

翻译成人话就是。事件的概率小于1,也就是存在。接下来就是计算复杂性理论很喜欢用到的一些转化。定理条件说是有限的,也就是一个常数,并且该常数与n无关,常数在计算复杂性中可以忽略,所以可将等效为

证明完毕。

简化理解:以上推导只是严格按照概率论格式来推导,所以看起来可能有点复杂。让我们来简化下。该定理说明当期望有上限时,至少存在一个变量的值也是这个上限(是不是很简单)。只不是今天的上限满足,(安全领域很喜欢研究渐近性)。

三. Chebyshev不等式

令X为随机变量,可得:

理解:变量的值与期望值不会相差太大,该上限与方差相关。

四. Chernov上限

4.1 变量大于

令X为随机变量,可得:

理解:将s看成一个常数,代表变量大于等于a的概率;代表对变量操作指数变换后,求数学期望;该定理反映了变量大于某值时对应的概率有上限,该上限与数学期望有关。与Markov不等式相比,多了一个s,在实际信息论安全推导时,可以设定任何自己想要的参数。

4.2 变量小于

令X为随机变量,可得:

该定理的理解与4.1类似,就不重复描述了。

相关推荐
Yingjun Mo13 小时前
概率论角度: Laplace 算子和分数阶 Laplace 算子
概率论
CS创新实验室1 天前
《机器学习数学基础》补充资料:泰勒定理与余项
人工智能·机器学习·概率论·泰勒定理·泰勒展开·余项
EQUINOX19 天前
如何理解泊松分布
概率论
幻风_huanfeng11 天前
人工智能之数学基础:概率论之韦恩图的应用
概率论·韦恩图
金色光环14 天前
切比雪夫不等式的理解以及推导【超详细笔记】
概率论
幻风_huanfeng16 天前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论
点云SLAM17 天前
海森矩阵(Hessian Matrix)在SLAM图优化和点云配准中的应用介绍
算法·机器学习·矩阵·机器人·概率论·最小二乘法·数值优化
港港胡说21 天前
概率论-独立同分布
概率论
F_D_Z23 天前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
金色光环1 个月前
概率论:理解区间估计【超详细笔记】
笔记·数学·概率论·数理统计·区间估计