Pytorch项目,肺癌检测项目之四

安装图像处理 的两个包 simpleITK 和 ipyvolume

安装缓存相关的两个包 diskcache 和 cassandra-driver

import gzip

from diskcache import FanoutCache, Disk

from cassandra.cqltypes import BytesType

from diskcache import FanoutCache,Disk,core

from diskcache.core import io

from io import BytesIO

from diskcache.core import MODE_BINARY

from util.logconf import logging

log+ logging.getLogger(name)

log.setLevel(logging.INFO)

import matplotlib

matplotlib.use('nbagg')

import numpy as np

import matplotlib.pyplot as plt

from codel.dsets import Ct ,LunaDataset

clim = (-1000.0,300)

def findPositiveSamples(start_ndx=0,limit=100):

ds = LinaDataset()

positiveSample_list = []

for sample_tup in ds.candidateInfo_list:

if sample_tup.isNodule_bool:

#print(len(positiveSanple_list),sample_tup)

if len(positiveSample_list)>=linit:

break

return positiveSample_list

def showCandidate(series_uid,batch_ndx=None, **kwargs):

ds = LunaDataset(series_uid=series_uid,**kwargs)

pos_list = [i for i, x in enumerate(ds.candidateInfo_list) if x.isNodule_bool]

if batch_ndx is None:

if pos_list:

batch_ndx = pos_list[0]

else:

print("Warning: no positive samples found : using frist negative sample.")

batch_ndx = 0

cd = Ct(series_uid)

cd_t,pos_t,series_uid,center_irc = ds[batch_ndx]

ct_a = ct_t[0].numpy()

#图像的设置问题,设置图片的大小

fig = plt.figure(figsize=(30,50))

#设置切片位置

group_list = [[9,11,13],[15,16,17],[19,21,23]]

add_subplot(3,4,,9) 写在三行四列第九个位置

subplot = fig.add_subplot(len(grooup_list)+2,3,1)

sub.set_title('index {}'.format(int(center_irc[0])),fontsize=30)

for label in (subplot.get_xticklabels()+ subplot.get_yticklabels()):

label.set_fontsize(20)

plt.imshow(ct.hu_a[int(center_irc[0])],clim=clim,cmap='gray')

for row index_list in enumerate(group_list):

for col,index in enumerate(index_list):

subplot=fig.add_subplot(len(group_list)+2,3,row*3+clo+7)

subplot.set_title('sicle {}'.format(index),fontsize=30)

for label in (subplot.get_xticklabels() + subplot.get_vticklabels()):

label.set_fontsize(20)

plt.imshow(ct_a[index],clim=clim,cmap='gary')

print(series_uid,batch_ndx,bool(pos_t[0]),pos_list)

总结:

(1)肺部肿瘤检测项目介绍

(2)了解CT数据,定制方案

(3)下载项目中使用的数据集

(4)对数据集进行处理

(5)如何可视化CT数据

问题挑战和思考调研

(1)缓存部分去掉加载数据集需要多长时间

(2)网站grand-challenge网站上还有木有以CT数据作为数据源的项目

(3)了解下除了CT图像数据,还有什么3D图像

相关推荐
shy^-^cky2 分钟前
Python程序设计完整复习要点(含实例)
python·期末复习
没学上了2 分钟前
Vlm-BERT简介
人工智能·深度学习·bert
独自破碎E3 分钟前
怎么实现AI的多轮对话功能?
人工智能
阿豪Jeremy11 分钟前
bert-base-chinese-ner微调总结——针对“领域实体微调”及“增量实体微调”任务
人工智能·深度学习·bert
KG_LLM图谱增强大模型23 分钟前
知识图谱+大模型“驱动的生物制药企业下一代主数据管理:Neo4j知识图谱与GraphRAG及GenAI的深度整合
人工智能·大模型·知识图谱
DisonTangor25 分钟前
【DeepSeek拥抱开源】通过可扩展查找实现的条件记忆:大型语言模型稀疏性的新维度
人工智能·语言模型·自然语言处理
lkbhua莱克瓦2426 分钟前
稠密、稀疏与MoE:大模型时代的三重架构革命
人工智能·深度学习·机器学习·ai·架构
反向跟单策略26 分钟前
期货反向跟单-贵金属牛市中的反向跟单密码
大数据·人工智能·学习·数据分析·区块链
K姐研究社26 分钟前
实测百度文库AI PPT制作,一键排版美化生成专业PPT
人工智能·百度·powerpoint
万邦科技Lafite27 分钟前
阿里巴巴商品详情API返回值:电商精准营销的关键
大数据·数据库·人工智能·电商开放平台