nn.LSTM个人记录

简介

nn.LSTM参数

python 复制代码
torch.nn.lstm(input_size,   "输入的嵌入向量维度,例如每个单词用50维向量表示,input_size就是50"
              hidden_size,  "隐藏层节点数量,也是输出的嵌入向量维度"
              num_layers,   "lstm 隐层的层数,默认为1"
              bias,         "隐层是否带 bias,默认为 true"
              batch_first,  "True 或者 False,如果是 True,则 input 为(batchsize, len, input_size),默认值为:False(len, batchsize, input_size)"
              dropout,      "除最后一层,每一层的输出都进行dropout,默认值0"
              bidirectional "如果设置为 True, 则表示双向 LSTM,默认为 False"
              )

维度

batch_first=True,输入维度(batchsize,len,input_size)

batch_first=False,输入维度(len,batchsize, input_size)

batch_first=False,输出维度(len,batchsize,hidden_size)

举例嵌入向量维度为1

假如输入x为(batchsize,len)的序列,即嵌入向量维度为1,进行一个回归预测。

如果将嵌入向量维度维度设为1就不太合理,因为如果len非常长例如几w,那么经过几w的时间步得到的得到的h维度为( batchsize,1**),序列太长丢失很多信息,再输入全连接层预测效果不好。并且lstm实际上将嵌入向量维度从input_size规约到hidden_size。**

所以在这里我们将len作为input_size,嵌入向量维度1作为len(即对调了一下)

添加一个维度:

python 复制代码
x = x.unsqueeze(0)

x维度变为(1,batchsize,len),相当于设置数据的长度为1,嵌入向量维度为len,通过nn.LSTM输入到网络中。

python 复制代码
#lstm为定义的网络
#h[-1]为最后输入到全连接层的嵌入矩阵 但是由于此问题中len为1,所以x等于h[-1]
x, (h, c) = lstm(x)

x维度变为(1,batchsize,hidden_size)

h为每层lstm最后一个时间步的输出一般可以输入到后续的全连接层),维度为(num_layers,batchsize,hidden_size)

c为最后一个时间步 LSTM cell 的状态(记忆单元,一般用不到),维度为(num_layers,batchsize,hidden_size)

移除张量中所有尺寸为 1 的维度,即将第一个维度移除掉:

python 复制代码
lstm_out = x.squeeze(0)

x维度变为(batchsize,hidden_size) ,输入到全连接层(线性层,维度(hidden_size,num_class))中,最终输出维度(batchsize,num_class)

参考:

Pytorch --- LSTM (nn.LSTM & nn.LSTMCell)-CSDN博客

相关推荐
曹文杰15190301126 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
救救孩子把7 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
AI即插即用9 小时前
即插即用系列 | ECCV 2024 WTConv:利用小波变换实现超大感受野的卷积神经网络
图像处理·人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测
哥布林学者10 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (一)目标定位与特征点检测
深度学习·ai
m0_7048878910 小时前
DAY 40
人工智能·深度学习
鲨莎分不晴11 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
m0_6924571011 小时前
阈值分割图像
图像处理·深度学习·计算机视觉
ys~~11 小时前
git学习
git·vscode·python·深度学习·学习·nlp·github
光羽隹衡12 小时前
机械学习逻辑回归——银行贷款案例
算法·机器学习·逻辑回归