RabbitMQ如何做到不丢不重

目录

MQTT协议

如何保证消息100%不丢失

生产端可靠性投递

​编辑

RabbitMQ的Broker端投

(1)消息持久化

(2)设置集群镜像模式

(3)消息补偿机制

消费端

ACK机制改为手动

总结


MQTT协议

先来说下MQTT协议中的3种语义,这个非常重要。

在MQTT协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:

At most once :至多一次。消息在传递时,最多会被送达一次。也就是说,没什么消息可靠性保证,允许丢消息。
At least once :至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级 这个服务质量标准不仅适用于MQTT,对所有的消息队列都是适用的。现在常用的绝大部分消息队列提供的服务质量都是 At least once,包括RocketMQ、RabbitMQ和Kafka都是这样。也就是说,消息队列很难保证消息不重复。

At least once+幂等消费=Exactly once

如何保证消息100%不丢失

消息从生产端到消费端消费要经过3个步骤:

  1. 生产端发送消息到RabbitMQ;
  2. RabbitMQ发送消息到消费端;
  3. 消费端消费这条消息;

所以要保证消息不丢,就得从三个方面入手,分别是生产端、RabbitMQ的Broker端、消费端。三个都保证不丢失,才能保证100%不丢。

生产端可靠性投递

事务机制:

java 复制代码
// 设置channel开启事务
rabbitTemplate.setChannelTransacted(true);


@Bean
public RabbitTransactionManager rabbitTransactionManager(ConnectionFactory connectionFactory)
 {
  return new RabbitTransactionManager(connectionFactory);
 }
    
@Transactional(rollbackFor = Exception.class,transactionManager = "rabbitTransactionManager")
public void publishMessage(String message) throws Exception {
   rabbitTemplate.setMandatory(true);
   rabbitTemplate.convertAndSend("java",message);
    }

confirm消息确认机制:

java 复制代码
# 开启发送确认
spring.rabbitmq.publisher-confirm-type=correlated
# 开启发送失败回退
spring.rabbitmq.publisher-returns=true	     
java 复制代码
@Configuration
@Slf4j
public class RabbitMQConfig {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @PostConstruct
    public void enableConfirmCallback() {
        //confirm 监听,当消息成功发到交换机 ack = true,没有发送到交换机 ack = false
        //correlationData 可在发送时指定消息唯一 id
        rabbitTemplate.setConfirmCallback((correlationData, ack, cause) -> {
            if(!ack){
                //记录日志、落库定时任务扫描重发,同时对开发人员进行通知
            }
        });
        
        //当消息成功发送到交换机没有路由到队列触发此监听
        rabbitTemplate.setReturnsCallback(returned -> {
            //记录日志、落库、同时对开发人员进行通知
        });
    }
}

一般不推荐事务的模式,因为是同步的会影响性能,所以都会采用异步回调的confirm模式。

RabbitMQ的Broker端投

说三点:

(1)要保证rabbitMQ不丢失消息,那么就需要开启rabbitMQ的持久化机制,即把消息持久化到硬盘上,这样即使rabbitMQ挂掉在重启后仍然可以从硬盘读取消息;

(2)如果rabbitMQ单点故障怎么办,这种情况倒不会造成消息丢失,这里就要提到rabbitMQ的3种安装模式,单机模式、普通集群模式、镜像集群模式,这里要保证rabbitMQ的高可用就要配合HAPROXY做镜像集群模式

(3)如果硬盘坏掉怎么保证消息不丢失

(1)消息持久化

RabbitMQ 的消息默认存放在内存上面,如果不特别声明设置,消息不会持久化保存到硬盘上面的,如果节点重启或者意外crash掉,消息就会丢失。

所以就要对消息进行持久化处理。如何持久化,下面具体说明下:

要想做到消息持久化,必须满足以下三个条件,缺一不可。

1) Exchange 设置持久化

2)Queue 设置持久化

3)Message持久化发送:发送消息设置发送模式deliveryMode=2,代表持久化消息

(2)设置集群镜像模式

我们先来介绍下RabbitMQ三种部署模式:

1)单节点模式:最简单的情况,非集群模式,节点挂了,消息就不能用了。业务可能瘫痪,只能等待。

2)普通模式:消息只会存在与当前节点中,并不会同步到其他节点,当前节点宕机,有影响的业务会瘫痪,只能等待节点恢复重启可用(必须持久化消息情况下)。

3)镜像模式:消息会同步到其他节点上,可以设置同步的节点个数,但吞吐量会下降。属于RabbitMQ的HA方案

为什么设置镜像模式集群,因为队列的内容仅仅存在某一个节点上面,不会存在所有节点上面,所有节点仅仅存放消息结构和元数据。

如果想解决上面途中问题,保证消息不丢失,需要采用HA 镜像模式队列。

下面介绍下三种HA策略模式

1)同步至所有的

2)同步最多N个机器

3)只同步至符合指定名称的nodes

命令处理HA策略模版:rabbitmqctl set_policy [-p Vhost] Name Pattern Definition [Priority]

1)为每个以"rock.wechat"开头的队列设置所有节点的镜像,并且设置为自动同步模式 rabbitmqctl set_policy ha-all "^rock.wechat" '{"ha-mode":"all","ha-sync-mode":"automatic"}' rabbitmqctl set_policy -p rock ha-all "^rock.wechat" '{"ha-mode":"all","ha-sync-mode":"automatic"}'

2)为每个以"rock.wechat."开头的队列设置两个节点的镜像,并且设置为自动同步模式 rabbitmqctl set_policy -p rock ha-exacly "^rock.wechat" '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'

3)为每个以"node."开头的队列分配指定的节点做镜像 rabbitmqctl set_policy ha-nodes "^nodes." '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'

但是:HA 镜像队列有一个很大的缺点就是:系统的吞吐量会有所下降。

(3)消息补偿机制

为什么还要消息补偿机制呢?难道消息还会丢失,没错,系统是在一个复杂的环境,不要想的太简单了,虽然以上的三种方案,基本可以保证消息的高可用不丢失的问题,

但是作为有追求的程序员来讲,要绝对保证我的系统的稳定性,有一种危机意识。

比如:持久化的消息,保存到硬盘过程中,当前队列节点挂了,存储节点硬盘又坏了,消息丢了,怎么办?

1)生产端首先将业务数据以及消息数据入库,需要在同一个事务中,消息数据入库失败,则整体回滚

2)根据消息表中消息状态,失败则进行消息补偿措施,重新发送消息处理。

消费端
ACK机制改为手动

RabbitMQ的自动ack机制默认在消息发出后就立即将这条消息删除,而不管消费端是否接收到,是否处理完。

我们需要进行手动消费

java 复制代码
#开启手动ACK,消费消息的时候,就必须发送ack确认,不然消息永远还在队列中
spring.rabbitmq.listener.simple.acknowledge-mode=manual

basicNack 方法的第三个参数代表是否重回队列,通常代码的报错并不会因为重试就能解决,所以可能这种情况:继续被消费,继续报错,重回队列,继续被消费...死循环。

一定要有重发消息次数的限制,或者干脆不入队,发送到Redis进行下记录也行。一般就不会再次入队了,而是记录并通知开发人员,进行手动处理

java 复制代码
 @RabbitHandler
    @RabbitListener(queuesToDeclare = @Queue(RabbitMQConfig.RABBITMQ_DEMO_TOPIC))
    public void process(String msg, Message message, Channel channel) {
        long tag = message.getMessageProperties().getDeliveryTag();
        Action action = Action.SUCCESS;
        try {
            System.out.println("消费者RabbitDemoConsumer从RabbitMQ服务端消费消息:" + msg);
            if ("bad".equals(msg)) {
                throw new IllegalArgumentException("测试:抛出可重回队列的异常");
            }
            if ("error".equals(msg)) {
                throw new Exception("测试:抛出无需重回队列的异常");
            }
        } catch (IllegalArgumentException e1) {
            e1.printStackTrace();
            //根据异常的类型判断,设置action是可重试的,还是无需重试的
            action = Action.RETRY;
        } catch (Exception e2) {
            //打印异常
            e2.printStackTrace();
            //根据异常的类型判断,设置action是可重试的,还是无需重试的
            action = Action.REJECT;
        } finally {
            try {
                if (action == Action.SUCCESS) {
                    //multiple 表示是否批量处理。true表示批量ack处理小于tag的所有消息。false则处理当前消息
                    channel.basicAck(tag, false);
                } else if (action == Action.RETRY) {
                    //Nack,拒绝策略,消息重回队列
                    channel.basicNack(tag, false, true);
                } else {
                    //Nack,拒绝策略,并且从队列中删除
                    channel.basicNack(tag, false, false);
                }
                channel.close();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}
总结

如果需要保证消息在整条链路中不丢失,那就需要生产端、mq自身与消费端共同去保障。

生产端:对生产的消息进行状态标记,开启confirm机制,依据mq的响应来更新消息状态,使用定时任务重新投递超时的消息,多次投递失败进行报警。

mq自身:开启持久化,并在落盘后再进行ack。如果是镜像部署模式,需要在同步到多个副本之后再进行ack。

消费端:开启手动ack模式,在业务处理完成后再进行ack,并且需要保证幂等。

通过以上的处理,理论上不存在消息丢失的情况,但是系统的吞吐量以及性能有所下降。

相关推荐
ezreal_pan4 分钟前
kafka消费能力压测:使用官方工具
分布式·kafka
宽带你的世界5 分钟前
TiDB 是一个分布式 NewSQL 数据库
数据库·分布式·tidb
xiao-xiang16 分钟前
kafka-集群缩容
分布式·kafka
比花花解语19 分钟前
Kafka在Windows系统使用delete命令删除Topic时出现的问题
windows·分布式·kafka
解决方案工程师21 分钟前
【Kafka】Kafka高性能解读
分布式·kafka
yellowatumn24 分钟前
RocketMq\Kafka如何保障消息不丢失?
分布式·kafka·rocketmq
python资深爱好者44 分钟前
什么容错性以及Spark Streaming如何保证容错性
大数据·分布式·spark
HeartRaindj2 小时前
【中间件开发】kafka使用场景与设计原理
分布式·中间件·kafka
明达技术3 小时前
探索分布式 IO 模块网络适配器
分布式
爬山算法5 小时前
Zookeeper(58)如何在Zookeeper中实现分布式锁?
分布式·zookeeper·云原生