Hadoop完全分布式部署(超详细)

Hadoop完全分布式部署


目录

集群规划

准备3台服务器,具体规划如下:
一、非高可用模式

服务器node1 服务器node2 服务器node3
HDFS NameNode DataNode DataNode DataNode SecondaryNameNode
Yarn NodeManager Resourcemanager NodeManager NodeManager

二、高可用模式

服务器node1 服务器node2 服务器node3
HDFS NameNode DataNode NameNode DataNode DataNode
Yarn NodeManager Resourcemanager NodeManager Resourcemanager NodeManager

官网

点击:Hadoop官网下载地址

非高可用模式部署

  1. 去官网下载对应版本,然后上传解压(我用的是3.1.3的版本)

  2. 配置环境变量:vi /etc/profile.d/my_env.sh

    shell 复制代码
    #hadoop
    export HADOOP_HOME=/opt/install/hadoop-3.1.3
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
  3. 配置etc/hadoop/core-site.xml文件

    xml 复制代码
    <!-- 指定NameNode的地址 -->
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hadoop102:8020</value>
    </property>
    <!-- 指定hadoop数据的存储目录 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/opt/install/hadoop-3.1.3/data</value>
    </property>
    <!-- 配置HDFS网页登录使用的静态用户为jack -->
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>jack</value>
    </property>
    <!-- 以下配置主要是用hive操作hdfs的时候,当使用beeline客户端就会设计到用户的一个问题,要使用代理操作才能正常使用 -->
    <!-- 配置该jack允许通过代理访问的主机节点 -->
    <property>
        <name>hadoop.proxyuser.jack.hosts</name>
        <value>*</value>
    </property>
    <!-- 配置该jack允许通过代理用户所属组 -->
    <property>
        <name>hadoop.proxyuser.jack.groups</name>
        <value>*</value>
      </property>
    <!-- 配置该jack允许通过代理的用户-->
    <property>
        <name>hadoop.proxyuser.jack.users</name>
        <value>*</value>
    </property>
  4. 配置etc/hadoop/hdfs-site.xml文件

    xml 复制代码
    <!-- nn web端访问地址-->
      <property>
        <name>dfs.namenode.http-address</name>
        <value>hadoop102:9870</value>
    </property>
      <!-- 2nn web端访问地址-->
    <property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>hadoop104:9868</value>
    </property>
    <!-- 测试环境指定HDFS副本的数量 -->
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
  5. 配置etc/hadoop/yarn-site.xml文件

    xml 复制代码
    <!-- 指定MR走shuffle -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <!-- 指定ResourceManager的地址-->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop103</value>
    </property>
    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
    <!-- yarn容器允许分配的最大最小内存 -->
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>512</value>
    </property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>4096</value>
    </property>
    <!-- yarn容器允许管理的物理内存大小 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>
    <!-- 关闭yarn对物理内存和虚拟内存的限制检查 -->
    <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>false</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
    <!-- 开启日志聚集功能 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <!-- 设置日志聚集服务器地址 -->
    <property>  
    	<name>yarn.log.server.url</name>  
    	<value>http://hadoop102:19888/jobhistory/logs</value>
    </property>
    <!-- 设置日志保留时间为7天 -->
    <property>
    	<name>yarn.log-aggregation.retain-seconds</name>
    	<value>604800</value>
    </property>
  6. 配置etc/hadoop/mapred-site.xml文件

    xml 复制代码
    <!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <!-- 历史服务器端地址 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop102:10020</value>
    </property>
    <!-- 历史服务器web端地址 -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop102:19888</value>
    </property>
  7. 修改hadoop-env.sh配置文件

    shell 复制代码
    # pids路径:如果不修改,会存储在hadoop默认的临时存储路径tmp里面,这个目录过段时间hadoop会自动删除,如果pids被删除了,hadoop启动和停止会报错
    export HADOOP_PID_DIR=/opt/install/hadoop-3.1.3/pids
    # namenode/datanode-memory:增大namenode内存是因为默认的内存很少
    export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS -Xmx4096m"
    export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx8192m"
  8. 修改yarn-env.sh配置文件

    shell 复制代码
    # 新版本要求yarn的pid
    export HADOOP_PID_DIR=/opt/install/hadoop-3.1.3/pids
  9. 修改mapred-env.sh配置文件

    shell 复制代码
    export HADOOP_PID_DIR=/opt/install/hadoop-3.1.3/pids
  10. 配置workers

    shell 复制代码
    # 删除之前的localhost
    hadoop102
    hadoop103
    hadoop104
  11. 将hadoop3.1.3分发到hadoop103和hadoop104

    shell 复制代码
    scp -r /opt/install/hadoop-3.1.3 hadoop103:/opt/install/
    scp -r /opt/install/hadoop-3.1.3 hadoop104:/opt/install/
  12. 分发环境变量,记得source一下

  13. 第一次启动需要格式化namenode:hdfs namenode -format

  14. 启动hdfs:start-dfs.sh

  15. 启动yarn:start-yarn.sh

  16. 开启历史服务器:mapred --daemon start historyserver

  17. web访问hdfs:hadoop102:9870

  18. web访问yarn:hadoop102:8088

  19. web访问历史服务:hadoop102:19888

高可用模式部署

正在更新中,请耐心等待...

相关推荐
Robot侠6 小时前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
技术钱7 小时前
vue3解决大数据加载页面卡顿问题
大数据
福客AI智能客服10 小时前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
小五传输11 小时前
隔离网闸的作用是什么?新型网闸如何构筑“数字护城河”?
大数据·运维·安全
jkyy201411 小时前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
蚁巡信息巡查系统11 小时前
政府网站与政务新媒体检查指标抽查通报如何面对
大数据·内容运营
脸大是真的好~12 小时前
分布式锁-基于redis实现分布式锁(不推荐)- 改进利用LUA脚本(不推荐)前面都是原理 - Redisson分布式锁
redis·分布式·lua
视界先声12 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化
百***243712 小时前
GPT5.1 vs Claude-Opus-4.5 全维度对比及快速接入实战
大数据·人工智能·gpt
满目山河•12 小时前
二、复制三台虚拟机
hive·hadoop·hbase