【机器学习】深度学习与神经网络

1 人工神经网络(Artificial Neural Network, ANN )

感知机:

激励函数 f(·),也称转移函数、传输函数或限幅函数,其作用是将可能的无限域变换到指定的有限范围内进行输出。

常用的激励函数:

多层感知机:

输入层:接收输入信号的层。

输出层:产生输出信号的层。

中间层称为隐含层,不直接与外部环境打交道。隐含层的层数可从零到若干层。实际情况中,层与层之间可能有部分连接的情况。

激励函数应是非线性的,否则多层网络的计算能力并不比单层网络强。

前馈网络:没有层内联接,各结点前馈联接到下一层所有结点

反馈网络:结点的输出依赖于当前的输入,也依赖于自己以前的输出

前馈网络与反馈网络的比较:

  • 前馈型网络"不存储记忆",结点的输出仅仅是当前输出的加权和(再加激励)。
  • 在反馈网络中,要将以前的输出循环返回到输入。反馈网络类似于"人类的短期记忆",即网络的输出状态部分取决于以前的输入。

2 卷积神经网络(Convolutional Neural Networks, CNN)

卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,广泛应用于图像处理。

2.1 CNN算法组成结构

CNN算法结构主要组成部分:卷积层、池化层、全连接层

卷积层

简单讲,进行卷积计算,提取特征。

池化层

池化层基于局部相关性的思想,通过从局部相关的一组元素中进行采样或信息聚合,从而得到新的元素值。

作用:减少参数、降维、防止过拟合

常见的池化方式:

(1)最大池化(Max Pooling) ,从局部相关元素集中选取最大的一个元素值。

(2)平均池化(Average Pooling),从局部相关元素集中计算平均值并返回。

全连接层

顾名思义,连接所有神经元,输出结果。

2.2 CNN两大核心

局部链接:每个神经元只与上一层的部分神经元相连。即,只让相关性较强(一般指的距离较近的)的神经元参与计算。

参数共享:同一个卷积核在计算中都是共享的。

3 循环神经网络(Recurrent Neural Network, RNN)& 递归神经网络(Recursive Neural Network, RNN)

两者都简称为RNN,都可以处理序列数据。都主要都应用在在自然语言处理(Natural Language Processing, NLP)。但两者的算法结构不同。

想进一步了解可以看以下参考文章。

参考文章:
深度学习知识点全面总结
大话卷积神经网络(CNN)
大话循环神经网络(RNN)
百度百科:卷积神经网络
百度百科:循环神经网络

相关推荐
martian66531 分钟前
详解高阶数学领域-信息论与深度学习:互信息在对比学习中的应用
人工智能·深度学习·学习
雪不下38 分钟前
计算机中的数学:概率(6)
人工智能·机器学习·概率论
진영_38 分钟前
深度学习打卡第J1周:ResNet-50算法实战与解析
人工智能·深度学习
aitoolhub43 分钟前
课程表模板在线制作:稿定设计的实用方案
大数据·深度学习·教育电商·在线设计·教育培训
nwsuaf_huasir1 小时前
深度学习1.5-pip命令学习
深度学习
祝余Eleanor1 小时前
Day 30 函数专题2 装饰器
人工智能·python·机器学习·数据分析
龙腾AI白云1 小时前
【卷积神经网络(CNN)详细介绍及其原理详解 】
深度学习·神经网络
钛投标免费AI标书工具1 小时前
银奖·钛投标荣获华为技术有限公司主办昇腾AI大赛华中区决赛银奖
人工智能·深度学习·自然语言处理·知识图谱
nwsuaf_huasir1 小时前
深度学习1.3-软件篇-2025Pycharm添加导入anaconda中虚拟环境的python解释器以及相关Error解决方案
人工智能·python·深度学习
β添砖java2 小时前
机器学习----深度学习部分
人工智能·深度学习·机器学习