事实验证文章分类 Papers Category For Fact Checking
By 2023.11
个人根据自己的观点,花了很多时间整理的一些关于事实验证领域证据召回,验证推理过程的文献综合整理分类(不是很严谨)。
引用请注明出处
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
欢迎从事事实验证Fact Checking领域的友友们前来交流,讨论。可以私信我,也可以评论我,我都会看到滴,欢迎有合作意愿的朋友们!
以上所有图片中标记的参考文献见下:
1\] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing\[C\]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638. \[2\] Yang Z, Ma J, Chen H, et al. A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection\[J\]. arXiv preprint arXiv:2209.14642, 2022. \[3\] Kruengkrai C, Yamagishi J, Wang X. A multi-level attention model for evidence-based fact checking\[J\]. arXiv preprint arXiv:2106.00950, 2021. \[4\] Li X, Burns G A, Peng N. A Paragraph-level Multi-task Learning Model for Scientific Fact-Verification\[C\]//SDU@ AAAI. 2021. \[5\] Zeng X, Zubiaga A. Aggregating Pairwise Semantic Differences for Few-Shot Claim Veracity Classification\[J\]. arXiv preprint arXiv:2205.05646, 2022. \[6\] Glockner M, Staliūnaitė I, Thorne J, et al. AmbiFC: Fact-Checking Ambiguous Claims with Evidence\[J\]. arXiv e-prints, 2021: arXiv: 2104.00640. \[7\] Chamoun E, Saeidi M, Vlachos A. Automated Fact-Checking in Dialogue: Are Specialized Models Needed?\[J\]. arXiv preprint arXiv:2311.08195, 2023. \[8\] Schlichtkrull M, Guo Z, Vlachos A. AVeriTeC: A dataset for real-world claim verification with evidence from the web\[J\]. arXiv e-prints, 2023: arXiv: 2305.13117. \[9\] Soleimani A, Monz C, Worring M. Bert for evidence retrieval and claim verification\[C\]//Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14--17, 2020, Proceedings, Part II 42. Springer International Publishing, 2020: 359-366. \[10\] DeHaven M, Scott S. BEVERS: A General, Simple, and Performant Framework for Automatic Fact Verification\[J\]. arXiv preprint arXiv:2303.16974, 2023. \[11\] Wang G, Harwood K, Chillrud L, et al. Check-COVID: Fact-Checking COVID-19 News Claims with Scientific Evidence\[J\]. arXiv preprint arXiv:2305.18265, 2023. \[12\] Hu X, Guo Z, Wu G, et al. CHEF: A Pilot Chinese Dataset for Evidence-Based Fact-Checking\[J\]. arXiv preprint arXiv:2206.11863, 2022. \[13\] Ko M, Seong I, Lee H, et al. ClaimDiff: Comparing and Contrasting Claims on Contentious Issues\[C\]//Findings of the Association for Computational Linguistics: ACL 2023. 2023: 4711-4731. \[14\] Funkquist M. Combining sentence and table evidence to predict veracity of factual claims using TaPaS and RoBERTa\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 92-100. \[15\] Huang K H, Zhai C X, Ji H. CONCRETE: Improving Cross-lingual Fact-checking with Cross-lingual Retrieval\[J\]. arXiv preprint arXiv:2209.02071, 2022. \[16\] Si J, Zhu Y, Zhou D. Consistent Multi-Granular Rationale Extraction for Explainable Multi-hop Fact Verification\[J\]. arXiv preprint arXiv:2305.09400, 2023. \[17\] Saakyan A, Chakrabarty T, Muresan S. COVID-fact: Fact extraction and verification of real-world claims on COVID-19 pandemic\[J\]. arXiv preprint arXiv:2106.03794, 2021. \[18\] Gupta P, Wu C S, Liu W, et al. DialFact: A benchmark for fact-checking in dialogue\[J\]. arXiv preprint arXiv:2110.08222, 2021. \[19\] Hu N, Wu Z, Lai Y, et al. Dual-channel evidence fusion for fact verification over texts and tables\[C\]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022: 5232-5242. \[20\] Yao B M, Shah A, Sun L, et al. End-to-end multimodal fact-checking and explanation generation: A challenging dataset and models\[C\]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2733-2743. \[21\] Xu W, Wu J, Liu Q, et al. Evidence-aware fake news detection with graph neural networks\[C\]//Proceedings of the ACM Web Conference 2022. 2022: 2501-2510. \[22\] Sarrouti M, Abacha A B, M'rabet Y, et al. Evidence-based fact-checking of health-related claims\[C\]//Findings of the Association for Computational Linguistics: EMNLP 2021. 2021: 3499-3512. \[23\] Chen Z, Hui S C, Zhuang F, et al. EvidenceNet: Evidence Fusion Network for Fact Verification\[C\]//Proceedings of the ACM Web Conference 2022. 2022: 2636-2645. \[24\] Ma H, Xu W, Wei Y, et al. EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification\[J\]. arXiv preprint arXiv:2310.09754, 2023. \[25\] Yang J, Vega-Oliveros D, Seibt T, et al. Explainable fact-checking through question answering\[C\]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 8952-8956. \[26\] Jiang K, Pradeep R, Lin J. Exploring listwise evidence reasoning with t5 for fact verification\[C\]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). 2021: 402-410.\[27
28\] Bouziane M, Perrin H, Sadeq A, et al. FaBULOUS: Fact-checking Based on Understanding of Language Over Unstructured and Structured information\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 31-39. \[29\] Wadden D, Lin S, Lo K, et al. Fact or fiction: Verifying scientific claims\[J\]. arXiv preprint arXiv:2004.14974, 2020. \[30\] Pan L, Wu X, Lu X, et al. Fact-Checking Complex Claims with Program-Guided Reasoning\[J\]. arXiv preprint arXiv:2305.12744, 2023. \[31\] Rani A, Tonmoy S M, Dalal D, et al. FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering\[J\]. arXiv preprint arXiv:2305.04329, 2023. \[32\] Kim J, Park S, Kwon Y, et al. FactKG: Fact Verification via Reasoning on Knowledge Graphs\[J\]. arXiv preprint arXiv:2305.06590, 2023. \[33\] Cheung T H, Lam K M. FactLLaMA: Optimizing Instruction-Following Language Models with External Knowledge for Automated Fact-Checking\[J\]. arXiv preprint arXiv:2309.00240, 2023. \[34\] Park J, Min S, Kang J, et al. FAVIQ: FAct Verification from Information-seeking Questions\[J\]. arXiv preprint arXiv:2107.02153, 2021. \[35\] Aly R, Guo Z, Schlichtkrull M, et al. FEVEROUS: Fact extraction and VERification over unstructured and structured information\[J\]. arXiv preprint arXiv:2106.05707, 2021. \[36\] Rangapur A, Wang H, Shu K. Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation\[J\]. arXiv preprint arXiv:2309.08793, 2023. \[37\] Liu Z, Xiong C, Sun M, et al. Fine-grained fact verification with kernel graph attention network\[J\]. arXiv preprint arXiv:1910.09796, 2019. \[38\] Zhou J, Han X, Yang C, et al. GEAR: Graph-based evidence aggregating and reasoning for fact verification\[J\]. arXiv preprint arXiv:1908.01843, 2019. \[39\] Fan A, Piktus A, Petroni F, et al. Generating fact checking briefs\[J\]. arXiv preprint arXiv:2011.05448, 2020. \[40\] Chen J, Sriram A, Choi E, et al. Generating literal and implied subquestions to fact-check complex claims\[J\]. arXiv preprint arXiv:2205.06938, 2022. \[41\] Chen J, Zhang R, Guo J, et al. GERE: Generative evidence retrieval for fact verification\[C\]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022: 2184-2189. \[42\] Hu X, Guo Z, Wu G, et al. Give Me More Details: Improving Fact-Checking with Latent Retrieval\[J\]. arXiv preprint arXiv:2305.16128, 2023. \[43\] Kotonya N, Spooner T, Magazzeni D, et al. Graph reasoning with context-aware linearization for interpretable fact extraction and verification\[J\]. arXiv preprint arXiv:2109.12349, 2021. \[44\] Lin H, Fu X. Heterogeneous-Graph Reasoning and Fine-Grained Aggregation for Fact Checking\[C\]//Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER). 2022: 6-15. \[45\] Subramanian S, Lee K. Hierarchical evidence set modeling for automated fact extraction and verification\[J\]. arXiv preprint arXiv:2010.05111, 2020. \[46\] Wang H, Li Y, Huang Z, et al. IMCI: Integrate Multi-view Contextual Information for Fact Extraction and Verification\[J\]. arXiv preprint arXiv:2208.14001, 2022. \[47\] Allein L, Saelens M, Cartuyvels R, et al. Implicit Temporal Reasoning for Evidence-Based Fact-Checking\[J\]. arXiv preprint arXiv:2302.12569, 2023. \[48\] Ou S, Liu Y. Learning to Generate Programs for Table Fact Verification via Structure-Aware Semantic Parsing\[C\]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 7624-7638. \[49\] Jin Z, Lalwani A, Vaidhya T, et al. Logical fallacy detection\[J\]. arXiv preprint arXiv:2202.13758, 2022. \[50\] Chen J, Bao Q, Sun C, et al. Loren: Logic-regularized reasoning for interpretable fact verification\[C\]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(10): 10482-10491. \[51\] Liu Y, Zhu C, Zeng M. Modeling Entity Knowledge for Fact Verification\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 50-59. \[52\] Wadden D, Lo K, Wang L L, et al. MultiVerS: Improving scientific claim verification with weak supervision and full-document context\[J\]. arXiv preprint arXiv:2112.01640, 2021. \[53\] Saeed M, Alfarano G, Nguyen K, et al. Neural re-rankers for evidence retrieval in the FEVEROUS task\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 108-112. \[54\] Zeng F, Gao W. Prompt to be Consistent is Better than Self-Consistent? Few-Shot and Zero-Shot Fact Verification with Pre-trained Language Models\[J\]. arXiv preprint arXiv:2306.02569, 2023. \[55\] Pan L, Lu X, Kan M Y, et al. QACHECK: A Demonstration System for Question-Guided Multi-Hop Fact-Checking\[J\]. arXiv preprint arXiv:2310.07609, 2023. \[56\] Hu X, Hong Z, Guo Z, et al. Read it Twice: Towards Faithfully Interpretable Fact Verification by Revisiting Evidence\[C\]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2319-2323. \[57\] Zhong W, Xu J, Tang D, et al. Reasoning over semantic-level graph for fact checking\[J\]. arXiv preprint arXiv:1909.03745, 2019. \[58\] Nikopensius G, Mayank M, Phukan O C, et al. Reinforcement learning-based knowledge graph reasoning for explainable fact-checking\[J\]. arXiv preprint arXiv:2310.07613, 2023. \[59\] Rakotoson L, Letaillieur C, Massip S, et al. Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking\[J\]. arXiv preprint arXiv:2204.12263, 2022. \[60\] Vladika J, Matthes F. Scientific Fact-Checking: A Survey of Resources and Approaches\[J\]. arXiv preprint arXiv:2305.16859, 2023. \[61\] Wadden D, Lo K, Kuehl B, et al. SciFact-open: Towards open-domain scientific claim verification\[J\]. arXiv preprint arXiv:2210.13777, 2022. \[62\] Li M, Peng B, Zhang Z. Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models\[J\]. arXiv preprint arXiv:2305.14623, 2023. \[63\] Chen W, Wang H, Chen J, et al. Tabfact: A large-scale dataset for table-based fact verification\[J\]. arXiv preprint arXiv:1909.02164, 2019. \[64\] Zhou Y, Liu X, Zhou K, et al. Table-based fact verification with self-adaptive mixture of experts\[J\]. arXiv preprint arXiv:2204.08753, 2022. \[65\] Malon C. Team papelo at FEVEROUS: Multi-hop evidence pursuit\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 40-49. \[66\] Si J, Zhou D, Li T, et al. Topic-aware evidence reasoning and stance-aware aggregation for fact verification\[J\]. arXiv preprint arXiv:2106.01191, 2021. \[67\] Lee N, Bang Y, Madotto A, et al. Towards few-shot fact-checking via perplexity\[J\]. arXiv preprint arXiv:2103.09535, 2021. \[68\] Bazaga A, Liò P, Micklem G. Unsupervised Fact Verification by Language Model Distillation\[J\]. arXiv preprint arXiv:2309.16540, 2023. \[69\] Ousidhoum N, Yuan Z, Vlachos A. Varifocal Question Generation for Fact-checking\[J\]. arXiv preprint arXiv:2210.12400, 2022. \[70\] Gi I Z, Fang T Y, Tsai R T H. Verdict Inference with Claim and Retrieved Elements Using RoBERTa\[C\]//Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER). 2021: 60-65. \[71\] Khan K, Wang R, Poupart P. WatClaimCheck: A new dataset for claim entailment and inference\[C\]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022: 1293-1304.