基于稀疏表示的小波变换多光谱图像融合算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

小波变换融合

PCA融合

基于稀疏表示的小波变换多光谱图像融合算法

性能指标对比

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
.........................................................................

% %读取数据并显示
% [MS]  = imread('image\MS256.tif');
% [PAN] = imread('image\PAN1024.tif');


% [MS]  = imread('image\数据1\low.jpg');
% [PAN] = imread('image\数据1\high.jpg');
% PAN   = rgb2gray(imresize(PAN,4));

[MS]  = imread('image\数据2\MS.jpg');
[PAN] = imread('image\数据2\PAN.jpg');
PAN   =  (imresize(PAN,4));

MS_show(:,:,1)=MS(:,:,1);
MS_show(:,:,2)=MS(:,:,2);
MS_show(:,:,3)=MS(:,:,3);

% down_size = 1/4;
% PAN  = imresize(PAN,down_size);
%小波变换,得到高频和低频系数
figure; 
imshow(MS_show);

NAME = 'haar';
R = func_fusion_tops(double(MS_show(:,:,1)),double(PAN),NAME);
G = func_fusion_tops(double(MS_show(:,:,2)),double(PAN),NAME);
B = func_fusion_tops(double(MS_show(:,:,3)),double(PAN),NAME);
 
%还原
img(:,:,1)     = R;
img(:,:,2)     = G;
img(:,:,3)     = B;
 

 
%显示重构图像
figure;
subplot(224);
imshow(uint8(img(:,:,1:3)));title('the reconstructed fusion image');
subplot(221);
imshow(img(:,:,1),[]);title('the reconstructed fusion image 1');
subplot(222);
imshow(img(:,:,2),[]);title('the reconstructed fusion image 2');
subplot(223);
imshow(img(:,:,3),[]);title('the reconstructed fusion image 3');
 

%信息熵
entropy = func_entropy(img(:,:,1));
entropy
%边缘强度
outval = edge_intensity(img(:,:,1)); 
outval
%平均梯度
outvals = avg_gradient(img(:,:,1));  
outvals

save R3.mat entropy outval outvals
figure;
subplot(131)
imshow(MS_show);title('待融合图像1');
subplot(132)
imshow(PAN);title('待融合图像2');
subplot(133)
imshow(uint8(img(:,:,1:3)));title('融合图像');
17_007m

4.算法理论概述

随着遥感技术的飞速发展,多光谱图像融合在地球观测、环境监测、军事侦察等领域的应用日益广泛。本文提出了一种基于稀疏表示的小波变换多光谱图像融合算法,通过结合稀疏表示理论和小波变换的优势,实现了对多源多光谱图像的有效融合。文中详细介绍了该算法的原理、实现步骤及性能评估,并通过实验验证了所提算法的有效性。

多光谱图像融合是指将来自不同传感器、不同波段的多幅图像融合成一幅具有更高空间分辨率和更丰富光谱信息的图像。传统的多光谱图像融合方法主要包括基于像素级的融合、基于特征级的融合和基于决策级的融合。然而,这些方法在处理复杂场景和多源数据时往往存在信息损失、光谱失真等问题。

近年来,稀疏表示理论在图像处理领域得到了广泛关注。稀疏表示能够通过学习一组过完备字典中的少量原子来表示信号,从而实现对信号的高效、精确表示。本文将稀疏表示理论引入多光谱图像融合领域,提出了一种基于稀疏表示的小波变换多光谱图像融合算法。该算法利用小波变换对图像进行多尺度分解,然后采用稀疏表示方法对分解后的系数进行融合,最后通过小波逆变换得到融合后的图像。实验结果表明,该算法能够在保持光谱信息的同时,提高空间分辨率,实现对多光谱图像的高质量融合。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
echoarts10 小时前
MATLAB R2025a安装配置及使用教程(超详细保姆级教程)
开发语言·其他·matlab
bu_shuo13 小时前
安装MATLAB205软件记录
matlab·matlab安装
MATLAB代码顾问13 小时前
MATLAB可以实现的各种智能算法
开发语言·matlab
软件算法开发1 天前
基于LSTM深度学习的网络流量测量算法matlab仿真
深度学习·matlab·lstm·网络流量测量
wheeldown2 天前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
小白的高手之路2 天前
Matlab中的积分——函数int()和quadl()
matlab
机器学习之心2 天前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
WangYan20223 天前
MATLAB 2023a深度学习工具箱全面解析:从CNN、RNN、GAN到YOLO与U-Net,涵盖模型解释、迁移学习、时间序列预测与图像生成的完整实战指南
深度学习·matlab·matlab 2023a
迎风打盹儿3 天前
均匀圆形阵抗干扰MATLAB仿真实录与特点解读
matlab·信号处理·抗干扰·均匀圆阵·波束合成
数维学长9863 天前
【全网最全】《2025国赛/高教杯》C题 思路+代码python和matlab+文献 一到四问 退火算法+遗传算法 NIPT的时点选择与胎儿的异常判定
开发语言·算法·matlab