基于稀疏表示的小波变换多光谱图像融合算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

小波变换融合

PCA融合

基于稀疏表示的小波变换多光谱图像融合算法

性能指标对比

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
.........................................................................

% %读取数据并显示
% [MS]  = imread('image\MS256.tif');
% [PAN] = imread('image\PAN1024.tif');


% [MS]  = imread('image\数据1\low.jpg');
% [PAN] = imread('image\数据1\high.jpg');
% PAN   = rgb2gray(imresize(PAN,4));

[MS]  = imread('image\数据2\MS.jpg');
[PAN] = imread('image\数据2\PAN.jpg');
PAN   =  (imresize(PAN,4));

MS_show(:,:,1)=MS(:,:,1);
MS_show(:,:,2)=MS(:,:,2);
MS_show(:,:,3)=MS(:,:,3);

% down_size = 1/4;
% PAN  = imresize(PAN,down_size);
%小波变换,得到高频和低频系数
figure; 
imshow(MS_show);

NAME = 'haar';
R = func_fusion_tops(double(MS_show(:,:,1)),double(PAN),NAME);
G = func_fusion_tops(double(MS_show(:,:,2)),double(PAN),NAME);
B = func_fusion_tops(double(MS_show(:,:,3)),double(PAN),NAME);
 
%还原
img(:,:,1)     = R;
img(:,:,2)     = G;
img(:,:,3)     = B;
 

 
%显示重构图像
figure;
subplot(224);
imshow(uint8(img(:,:,1:3)));title('the reconstructed fusion image');
subplot(221);
imshow(img(:,:,1),[]);title('the reconstructed fusion image 1');
subplot(222);
imshow(img(:,:,2),[]);title('the reconstructed fusion image 2');
subplot(223);
imshow(img(:,:,3),[]);title('the reconstructed fusion image 3');
 

%信息熵
entropy = func_entropy(img(:,:,1));
entropy
%边缘强度
outval = edge_intensity(img(:,:,1)); 
outval
%平均梯度
outvals = avg_gradient(img(:,:,1));  
outvals

save R3.mat entropy outval outvals
figure;
subplot(131)
imshow(MS_show);title('待融合图像1');
subplot(132)
imshow(PAN);title('待融合图像2');
subplot(133)
imshow(uint8(img(:,:,1:3)));title('融合图像');
17_007m

4.算法理论概述

随着遥感技术的飞速发展,多光谱图像融合在地球观测、环境监测、军事侦察等领域的应用日益广泛。本文提出了一种基于稀疏表示的小波变换多光谱图像融合算法,通过结合稀疏表示理论和小波变换的优势,实现了对多源多光谱图像的有效融合。文中详细介绍了该算法的原理、实现步骤及性能评估,并通过实验验证了所提算法的有效性。

多光谱图像融合是指将来自不同传感器、不同波段的多幅图像融合成一幅具有更高空间分辨率和更丰富光谱信息的图像。传统的多光谱图像融合方法主要包括基于像素级的融合、基于特征级的融合和基于决策级的融合。然而,这些方法在处理复杂场景和多源数据时往往存在信息损失、光谱失真等问题。

近年来,稀疏表示理论在图像处理领域得到了广泛关注。稀疏表示能够通过学习一组过完备字典中的少量原子来表示信号,从而实现对信号的高效、精确表示。本文将稀疏表示理论引入多光谱图像融合领域,提出了一种基于稀疏表示的小波变换多光谱图像融合算法。该算法利用小波变换对图像进行多尺度分解,然后采用稀疏表示方法对分解后的系数进行融合,最后通过小波逆变换得到融合后的图像。实验结果表明,该算法能够在保持光谱信息的同时,提高空间分辨率,实现对多光谱图像的高质量融合。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
Evand J11 小时前
【MATLAB例程】到达角度定位(AOA),平面环境多锚点定位(自适应基站数量),动态轨迹使用EKF滤波优化。附代码下载链接
开发语言·matlab·平面·滤波·aoa·到达角度
极客数模19 小时前
2025年MathorCup 大数据竞赛明日开赛,注意事项!论文提交规范、模板、承诺书正确使用!2025年第六届MathorCup数学应用挑战赛——大数据竞赛
大数据·python·算法·matlab·图论·比赛推荐
机器学习之心20 小时前
MATLAB基于灰色聚类-正态云的地铁牵引系统健康状态综合评估
matlab·灰色聚类·正态云
Matlab程序猿小助手20 小时前
【MATLAB源码-第303期】基于matlab的蒲公英优化算法(DO)机器人栅格路径规划,输出做短路径图和适应度曲线.
开发语言·算法·matlab·机器人·kmeans
简简单单做算法2 天前
基于图像小波变换的多尺度自适应双边滤波matlab仿真
matlab·多尺度·图像小波变换·自适应双边滤波
程高兴2 天前
LCC-S型磁耦合谐振无线电传输系统实现恒压输出simulink
matlab
fl1768312 天前
基于matlab实现的DnCNN网络
开发语言·matlab
Lee_yayayayaya2 天前
《通信之道—从微积分到5G》阅读笔记
开发语言·matlab
通信小呆呆2 天前
以矩阵视角统一理解:外积、Kronecker 积与 Khatri–Rao 积(含MATLAB可视化)
线性代数·算法·matlab·矩阵·信号处理
xrgs_shz3 天前
基于MATLAB的证件照片背景变换实例
图像处理·计算机视觉·matlab