基于稀疏表示的小波变换多光谱图像融合算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

小波变换融合

PCA融合

基于稀疏表示的小波变换多光谱图像融合算法

性能指标对比

2.算法运行软件版本

matlab2022a

3.部分核心程序

复制代码
.........................................................................

% %读取数据并显示
% [MS]  = imread('image\MS256.tif');
% [PAN] = imread('image\PAN1024.tif');


% [MS]  = imread('image\数据1\low.jpg');
% [PAN] = imread('image\数据1\high.jpg');
% PAN   = rgb2gray(imresize(PAN,4));

[MS]  = imread('image\数据2\MS.jpg');
[PAN] = imread('image\数据2\PAN.jpg');
PAN   =  (imresize(PAN,4));

MS_show(:,:,1)=MS(:,:,1);
MS_show(:,:,2)=MS(:,:,2);
MS_show(:,:,3)=MS(:,:,3);

% down_size = 1/4;
% PAN  = imresize(PAN,down_size);
%小波变换,得到高频和低频系数
figure; 
imshow(MS_show);

NAME = 'haar';
R = func_fusion_tops(double(MS_show(:,:,1)),double(PAN),NAME);
G = func_fusion_tops(double(MS_show(:,:,2)),double(PAN),NAME);
B = func_fusion_tops(double(MS_show(:,:,3)),double(PAN),NAME);
 
%还原
img(:,:,1)     = R;
img(:,:,2)     = G;
img(:,:,3)     = B;
 

 
%显示重构图像
figure;
subplot(224);
imshow(uint8(img(:,:,1:3)));title('the reconstructed fusion image');
subplot(221);
imshow(img(:,:,1),[]);title('the reconstructed fusion image 1');
subplot(222);
imshow(img(:,:,2),[]);title('the reconstructed fusion image 2');
subplot(223);
imshow(img(:,:,3),[]);title('the reconstructed fusion image 3');
 

%信息熵
entropy = func_entropy(img(:,:,1));
entropy
%边缘强度
outval = edge_intensity(img(:,:,1)); 
outval
%平均梯度
outvals = avg_gradient(img(:,:,1));  
outvals

save R3.mat entropy outval outvals
figure;
subplot(131)
imshow(MS_show);title('待融合图像1');
subplot(132)
imshow(PAN);title('待融合图像2');
subplot(133)
imshow(uint8(img(:,:,1:3)));title('融合图像');
17_007m

4.算法理论概述

随着遥感技术的飞速发展,多光谱图像融合在地球观测、环境监测、军事侦察等领域的应用日益广泛。本文提出了一种基于稀疏表示的小波变换多光谱图像融合算法,通过结合稀疏表示理论和小波变换的优势,实现了对多源多光谱图像的有效融合。文中详细介绍了该算法的原理、实现步骤及性能评估,并通过实验验证了所提算法的有效性。

多光谱图像融合是指将来自不同传感器、不同波段的多幅图像融合成一幅具有更高空间分辨率和更丰富光谱信息的图像。传统的多光谱图像融合方法主要包括基于像素级的融合、基于特征级的融合和基于决策级的融合。然而,这些方法在处理复杂场景和多源数据时往往存在信息损失、光谱失真等问题。

近年来,稀疏表示理论在图像处理领域得到了广泛关注。稀疏表示能够通过学习一组过完备字典中的少量原子来表示信号,从而实现对信号的高效、精确表示。本文将稀疏表示理论引入多光谱图像融合领域,提出了一种基于稀疏表示的小波变换多光谱图像融合算法。该算法利用小波变换对图像进行多尺度分解,然后采用稀疏表示方法对分解后的系数进行融合,最后通过小波逆变换得到融合后的图像。实验结果表明,该算法能够在保持光谱信息的同时,提高空间分辨率,实现对多光谱图像的高质量融合。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
梦子要转行1 小时前
matlab/Simulink-全套50个汽车性能建模与仿真源码模型9
开发语言·matlab·汽车
Zevalin爱灰灰4 小时前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
曹勖之10 天前
simuilink和ROS2数据联通,Run后一直卡在Initializting
windows·matlab·simulink·ros2
Zevalin爱灰灰10 天前
MATLAB GUI界面设计 第三章——仪器组件
开发语言·ui·matlab
算法如诗10 天前
基于SOA(海鸥优化算法)的路径规划Matlab实现方案
开发语言·算法·matlab
项目申报小狂人10 天前
2025年中科院三区全新算法,恒星振荡优化器:受自然启发的元启发式优化,完整MATLAB代码免费获取
开发语言·算法·matlab
Zevalin爱灰灰11 天前
MATLAB GUI界面设计 第二章——APP Designer操作正式入门
开发语言·ui·matlab
季截11 天前
07、python调用matlab引擎
matlab
电力程序小学童12 天前
IEEE5节点系统潮流仿真模型(simulink+matlab全功能模型)
matlab·毕设·仿真·simulink·5节点系统·ieee 5·三相仿真模型
我爱C编程12 天前
基于强化学习的5G通信网络基站资源动态分配策略matlab性能仿真
5g·matlab·强化学习·基站资源动态分配