【数值分析】乘幂法,matlab实现

乘幂法

一种求实矩阵 A {A} A 的按模最大 的特征值,及其对应的特征向量 x i {x_i} xi 的方法,只能求一个 。特别适合于大型稀疏矩阵。

一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。

每次乘完之后要规范化,防止上溢或下溢。规范化可以用各种范数。

要保证矩阵最大特征值只有一个,有 n {n} n 个线性无关的特征向量。
有多个相同特征值时,求得的特征向量可以近似看成排第一个的最大特征值的特征向量。

步骤:

  1. 求初始向量 u 0 模最大元素的编号 i d    ,    初始特征值 β 0 = u 0 ( i d )    ,    求归一化后的初始向量 y 0 2. 迭代    ,    k = 0 , 1 , ⋯ u k + 1 = A y k β k + 1 = u k + 1 ( i d k ) y k + 1 = u k + 1 ∣ ∣ u k + 1 ∣ ∣ ∞ i d k + 1 = u k + 1 模最大元素的编号 3. 判断是否满足     β k + 1 − β k < eps    ,    特征值 = β k + 1 \begin{align*}1. &求初始向量u_0模最大元素的编号 id \,\,,\,\, 初始特征值 \beta_0=u_0(id) \,\,,\,\, 求归一化后的初始向量y_0 \\ \\ 2.& 迭代 \,\,,\,\, k=0,1, \cdots \\ \\ & u_{k+1}=Ay_k \\ \\ & \beta_{k+1}=u_{k+1}(id_k) \\ \\ & y_{k+1}= \frac{u_{k+1}}{||u_{k+1}||\infty} \\ \\ & id{k+1}=u_{k+1}模最大元素的编号 \\ \\ 3.& 判断是否满足 \,\,\, \beta_{k+1}- \beta_k< \text{eps} \,\,,\,\, 特征值= \beta_{k+1} \end{align*} 1.2.3.求初始向量u0模最大元素的编号id,初始特征值β0=u0(id),求归一化后的初始向量y0迭代,k=0,1,⋯uk+1=Aykβk+1=uk+1(idk)yk+1=∣∣uk+1∣∣∞uk+1idk+1=uk+1模最大元素的编号判断是否满足βk+1−βk<eps,特征值=βk+1

!example\]- A = \[ 1 2 1 3 \]    ,    u 0 = \[ 0.6 0.8 \] A= \\begin{bmatrix} 1 \& 2 \\\\ 1 \& 3 \\end{bmatrix} \\,\\,,\\,\\, u_0= \\begin{bmatrix} 0.6\\\\0.8 \\end{bmatrix} A=\[1123\],u0=\[0.60.8

解:
y 0 = u 0 ∣ ∣ u 0 ∣ ∣ ∞ = [ 0.75 1.00 ] y_0= \frac{u_0}{||u_0||_\infty}= \begin{bmatrix} 0.75\\ 1.00 \end{bmatrix} y0=∣∣u0∣∣∞u0=[0.751.00]
u 1 = A y 0 = [ 2.75 3.75 ] u_1=Ay_0 = \begin{bmatrix} 2.75\\3.75 \end{bmatrix} u1=Ay0=[2.753.75]

在 y 0 {y_0} y0 中 1 {1} 1 在下面,所以近似最大特征值
β 1 = 3.75 \beta_1= 3.75 β1=3.75

特征向量
y 1 = u 1 ∣ ∣ u 1 ∣ ∣ ∞ = [ 0.7333 1.0000 ] y_1= \frac{u_1}{||u_1||_\infty}= \begin{bmatrix} 0.7333\\ 1.0000 \end{bmatrix} y1=∣∣u1∣∣∞u1=[0.73331.0000]

乘幂法matlab实现

matlab 复制代码
%% 乘幂法例子
A = [12 6 -6; 6 16 2; -6 2 16];
u0 = [1.0, 0.5, -0.5]';
format long
[beta1, i] = powerMethod(A, u0, 1e-6, 10)

%% 乘幂法求模最大特征值和特征向量
% 输入矩阵、初始迭代向量、精度、最大迭代次数
% 输出特征值、无穷范数归一化后的特征向量、迭代次数
function [lbd, y1, i] = powerMethod(A, u0, eps, max_iter)
    [u0norm, id] = max(abs(u0)); % 取无穷范数和其所在行
    beta0 = u0(id);
    y0 = u0/ u0norm;
    for i = 1:max_iter
        u1 = A*y0;
        beta1 = u1(id);
        [u1norm, id] = max(abs(u1));
        y1 = u1/u1norm;
        if abs(beta1 - beta0)<eps
            lbd = beta1;
            break;
        end
        y0 = y1; % 当前变成过去
        beta0 = beta1;
    end
end
相关推荐
山登绝顶我为峰 3(^v^)329 分钟前
如何录制带备注的演示文稿(LaTex Beamer + Pympress)
c++·线性代数·算法·计算机·密码学·音视频·latex
Python×CATIA工业智造3 小时前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
我叫小白菜3 小时前
【Java_EE】单例模式、阻塞队列、线程池、定时器
java·开发语言
狐凄4 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
weixin_446122465 小时前
JAVA内存区域划分
java·开发语言·redis
悦悦子a啊5 小时前
Python之--基本知识
开发语言·前端·python
QuantumStack5 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
whoarethenext6 小时前
使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
开发语言·c++·opencv·mfcc
代码的奴隶(艾伦·耶格尔)7 小时前
后端快捷代码
java·开发语言
hie988947 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab