【数值分析】乘幂法,matlab实现

乘幂法

一种求实矩阵 A {A} A 的按模最大 的特征值,及其对应的特征向量 x i {x_i} xi 的方法,只能求一个 。特别适合于大型稀疏矩阵。

一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。

每次乘完之后要规范化,防止上溢或下溢。规范化可以用各种范数。

要保证矩阵最大特征值只有一个,有 n {n} n 个线性无关的特征向量。
有多个相同特征值时,求得的特征向量可以近似看成排第一个的最大特征值的特征向量。

步骤:

  1. 求初始向量 u 0 模最大元素的编号 i d    ,    初始特征值 β 0 = u 0 ( i d )    ,    求归一化后的初始向量 y 0 2. 迭代    ,    k = 0 , 1 , ⋯ u k + 1 = A y k β k + 1 = u k + 1 ( i d k ) y k + 1 = u k + 1 ∣ ∣ u k + 1 ∣ ∣ ∞ i d k + 1 = u k + 1 模最大元素的编号 3. 判断是否满足     β k + 1 − β k < eps    ,    特征值 = β k + 1 \begin{align*}1. &求初始向量u_0模最大元素的编号 id \,\,,\,\, 初始特征值 \beta_0=u_0(id) \,\,,\,\, 求归一化后的初始向量y_0 \\ \\ 2.& 迭代 \,\,,\,\, k=0,1, \cdots \\ \\ & u_{k+1}=Ay_k \\ \\ & \beta_{k+1}=u_{k+1}(id_k) \\ \\ & y_{k+1}= \frac{u_{k+1}}{||u_{k+1}||\infty} \\ \\ & id{k+1}=u_{k+1}模最大元素的编号 \\ \\ 3.& 判断是否满足 \,\,\, \beta_{k+1}- \beta_k< \text{eps} \,\,,\,\, 特征值= \beta_{k+1} \end{align*} 1.2.3.求初始向量u0模最大元素的编号id,初始特征值β0=u0(id),求归一化后的初始向量y0迭代,k=0,1,⋯uk+1=Aykβk+1=uk+1(idk)yk+1=∣∣uk+1∣∣∞uk+1idk+1=uk+1模最大元素的编号判断是否满足βk+1−βk<eps,特征值=βk+1

[!example]-
A = [ 1 2 1 3 ]    ,    u 0 = [ 0.6 0.8 ] A= \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \,\,,\,\, u_0= \begin{bmatrix} 0.6\\0.8 \end{bmatrix} A=[1123],u0=[0.60.8]

解:
y 0 = u 0 ∣ ∣ u 0 ∣ ∣ ∞ = [ 0.75 1.00 ] y_0= \frac{u_0}{||u_0||_\infty}= \begin{bmatrix} 0.75\\ 1.00 \end{bmatrix} y0=∣∣u0∣∣∞u0=[0.751.00]
u 1 = A y 0 = [ 2.75 3.75 ] u_1=Ay_0 = \begin{bmatrix} 2.75\\3.75 \end{bmatrix} u1=Ay0=[2.753.75]

在 y 0 {y_0} y0 中 1 {1} 1 在下面,所以近似最大特征值
β 1 = 3.75 \beta_1= 3.75 β1=3.75

特征向量
y 1 = u 1 ∣ ∣ u 1 ∣ ∣ ∞ = [ 0.7333 1.0000 ] y_1= \frac{u_1}{||u_1||_\infty}= \begin{bmatrix} 0.7333\\ 1.0000 \end{bmatrix} y1=∣∣u1∣∣∞u1=[0.73331.0000]

乘幂法matlab实现

matlab 复制代码
%% 乘幂法例子
A = [12 6 -6; 6 16 2; -6 2 16];
u0 = [1.0, 0.5, -0.5]';
format long
[beta1, i] = powerMethod(A, u0, 1e-6, 10)

%% 乘幂法求模最大特征值和特征向量
% 输入矩阵、初始迭代向量、精度、最大迭代次数
% 输出特征值、无穷范数归一化后的特征向量、迭代次数
function [lbd, y1, i] = powerMethod(A, u0, eps, max_iter)
    [u0norm, id] = max(abs(u0)); % 取无穷范数和其所在行
    beta0 = u0(id);
    y0 = u0/ u0norm;
    for i = 1:max_iter
        u1 = A*y0;
        beta1 = u1(id);
        [u1norm, id] = max(abs(u1));
        y1 = u1/u1norm;
        if abs(beta1 - beta0)<eps
            lbd = beta1;
            break;
        end
        y0 = y1; % 当前变成过去
        beta0 = beta1;
    end
end
相关推荐
uppp»7 分钟前
深入理解 Java 反射机制:获取类信息与动态操作
java·开发语言
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
ll7788115 小时前
LeetCode每日精进:20.有效的括号
c语言·开发语言·算法·leetcode·职场和发展
Jackson@ML6 小时前
Python数据可视化简介
开发语言·python·数据可视化
赵琳琅7 小时前
Java语言的云计算
开发语言·后端·golang
lly2024067 小时前
jQuery 杂项方法
开发语言
赵琳琅7 小时前
MDX语言的安全开发
开发语言·后端·golang
开开又心心的学嵌入式7 小时前
C语言——指针进阶应用
c语言·开发语言
开开又心心的学嵌入式7 小时前
C语言——指针基础知识
c语言·开发语言
lonelyhiker7 小时前
javascript的原型链
开发语言·javascript·原型模式