【数值分析】乘幂法,matlab实现

乘幂法

一种求实矩阵 A {A} A 的按模最大 的特征值,及其对应的特征向量 x i {x_i} xi 的方法,只能求一个 。特别适合于大型稀疏矩阵。

一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。

每次乘完之后要规范化,防止上溢或下溢。规范化可以用各种范数。

要保证矩阵最大特征值只有一个,有 n {n} n 个线性无关的特征向量。
有多个相同特征值时,求得的特征向量可以近似看成排第一个的最大特征值的特征向量。

步骤:

  1. 求初始向量 u 0 模最大元素的编号 i d    ,    初始特征值 β 0 = u 0 ( i d )    ,    求归一化后的初始向量 y 0 2. 迭代    ,    k = 0 , 1 , ⋯ u k + 1 = A y k β k + 1 = u k + 1 ( i d k ) y k + 1 = u k + 1 ∣ ∣ u k + 1 ∣ ∣ ∞ i d k + 1 = u k + 1 模最大元素的编号 3. 判断是否满足     β k + 1 − β k < eps    ,    特征值 = β k + 1 \begin{align*}1. &求初始向量u_0模最大元素的编号 id \,\,,\,\, 初始特征值 \beta_0=u_0(id) \,\,,\,\, 求归一化后的初始向量y_0 \\ \\ 2.& 迭代 \,\,,\,\, k=0,1, \cdots \\ \\ & u_{k+1}=Ay_k \\ \\ & \beta_{k+1}=u_{k+1}(id_k) \\ \\ & y_{k+1}= \frac{u_{k+1}}{||u_{k+1}||\infty} \\ \\ & id{k+1}=u_{k+1}模最大元素的编号 \\ \\ 3.& 判断是否满足 \,\,\, \beta_{k+1}- \beta_k< \text{eps} \,\,,\,\, 特征值= \beta_{k+1} \end{align*} 1.2.3.求初始向量u0模最大元素的编号id,初始特征值β0=u0(id),求归一化后的初始向量y0迭代,k=0,1,⋯uk+1=Aykβk+1=uk+1(idk)yk+1=∣∣uk+1∣∣∞uk+1idk+1=uk+1模最大元素的编号判断是否满足βk+1−βk<eps,特征值=βk+1

!example\]- A = \[ 1 2 1 3 \]    ,    u 0 = \[ 0.6 0.8 \] A= \\begin{bmatrix} 1 \& 2 \\\\ 1 \& 3 \\end{bmatrix} \\,\\,,\\,\\, u_0= \\begin{bmatrix} 0.6\\\\0.8 \\end{bmatrix} A=\[1123\],u0=\[0.60.8

解:
y 0 = u 0 ∣ ∣ u 0 ∣ ∣ ∞ = [ 0.75 1.00 ] y_0= \frac{u_0}{||u_0||_\infty}= \begin{bmatrix} 0.75\\ 1.00 \end{bmatrix} y0=∣∣u0∣∣∞u0=[0.751.00]
u 1 = A y 0 = [ 2.75 3.75 ] u_1=Ay_0 = \begin{bmatrix} 2.75\\3.75 \end{bmatrix} u1=Ay0=[2.753.75]

在 y 0 {y_0} y0 中 1 {1} 1 在下面,所以近似最大特征值
β 1 = 3.75 \beta_1= 3.75 β1=3.75

特征向量
y 1 = u 1 ∣ ∣ u 1 ∣ ∣ ∞ = [ 0.7333 1.0000 ] y_1= \frac{u_1}{||u_1||_\infty}= \begin{bmatrix} 0.7333\\ 1.0000 \end{bmatrix} y1=∣∣u1∣∣∞u1=[0.73331.0000]

乘幂法matlab实现

matlab 复制代码
%% 乘幂法例子
A = [12 6 -6; 6 16 2; -6 2 16];
u0 = [1.0, 0.5, -0.5]';
format long
[beta1, i] = powerMethod(A, u0, 1e-6, 10)

%% 乘幂法求模最大特征值和特征向量
% 输入矩阵、初始迭代向量、精度、最大迭代次数
% 输出特征值、无穷范数归一化后的特征向量、迭代次数
function [lbd, y1, i] = powerMethod(A, u0, eps, max_iter)
    [u0norm, id] = max(abs(u0)); % 取无穷范数和其所在行
    beta0 = u0(id);
    y0 = u0/ u0norm;
    for i = 1:max_iter
        u1 = A*y0;
        beta1 = u1(id);
        [u1norm, id] = max(abs(u1));
        y1 = u1/u1norm;
        if abs(beta1 - beta0)<eps
            lbd = beta1;
            break;
        end
        y0 = y1; % 当前变成过去
        beta0 = beta1;
    end
end
相关推荐
黄雪超4 小时前
JVM——函数式语法糖:如何使用Function、Stream来编写函数式程序?
java·开发语言·jvm
ThetaarSofVenice4 小时前
对象的finalization机制Test
java·开发语言·jvm
思则变4 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
lijingguang4 小时前
在C#中根据URL下载文件并保存到本地,可以使用以下方法(推荐使用现代异步方式)
开发语言·c#
¥-oriented5 小时前
【C#中路径相关的概念】
开发语言·c#
CoderCodingNo5 小时前
【GESP】C++四级考试大纲知识点梳理, (7) 排序算法基本概念
开发语言·c++·排序算法
恋猫de小郭5 小时前
Meta 宣布加入 Kotlin 基金会,将为 Kotlin 和 Android 生态提供全新支持
android·开发语言·ios·kotlin
JosieBook6 小时前
【Java编程动手学】使用IDEA创建第一个HelloJava程序
java·开发语言·intellij-idea
Thomas_YXQ6 小时前
Unity3D DOTS场景流式加载技术
java·开发语言·unity
旷世奇才李先生6 小时前
Ruby 安装使用教程
开发语言·后端·ruby