【数值分析】乘幂法,matlab实现

乘幂法

一种求实矩阵 A {A} A 的按模最大 的特征值,及其对应的特征向量 x i {x_i} xi 的方法,只能求一个 。特别适合于大型稀疏矩阵。

一个矩阵的特征值和特征向量可以通过矩阵不断乘以一个初始向量得到。

每次乘完之后要规范化,防止上溢或下溢。规范化可以用各种范数。

要保证矩阵最大特征值只有一个,有 n {n} n 个线性无关的特征向量。
有多个相同特征值时,求得的特征向量可以近似看成排第一个的最大特征值的特征向量。

步骤:

  1. 求初始向量 u 0 模最大元素的编号 i d    ,    初始特征值 β 0 = u 0 ( i d )    ,    求归一化后的初始向量 y 0 2. 迭代    ,    k = 0 , 1 , ⋯ u k + 1 = A y k β k + 1 = u k + 1 ( i d k ) y k + 1 = u k + 1 ∣ ∣ u k + 1 ∣ ∣ ∞ i d k + 1 = u k + 1 模最大元素的编号 3. 判断是否满足     β k + 1 − β k < eps    ,    特征值 = β k + 1 \begin{align*}1. &求初始向量u_0模最大元素的编号 id \,\,,\,\, 初始特征值 \beta_0=u_0(id) \,\,,\,\, 求归一化后的初始向量y_0 \\ \\ 2.& 迭代 \,\,,\,\, k=0,1, \cdots \\ \\ & u_{k+1}=Ay_k \\ \\ & \beta_{k+1}=u_{k+1}(id_k) \\ \\ & y_{k+1}= \frac{u_{k+1}}{||u_{k+1}||\infty} \\ \\ & id{k+1}=u_{k+1}模最大元素的编号 \\ \\ 3.& 判断是否满足 \,\,\, \beta_{k+1}- \beta_k< \text{eps} \,\,,\,\, 特征值= \beta_{k+1} \end{align*} 1.2.3.求初始向量u0模最大元素的编号id,初始特征值β0=u0(id),求归一化后的初始向量y0迭代,k=0,1,⋯uk+1=Aykβk+1=uk+1(idk)yk+1=∣∣uk+1∣∣∞uk+1idk+1=uk+1模最大元素的编号判断是否满足βk+1−βk<eps,特征值=βk+1

!example\]- A = \[ 1 2 1 3 \]    ,    u 0 = \[ 0.6 0.8 \] A= \\begin{bmatrix} 1 \& 2 \\\\ 1 \& 3 \\end{bmatrix} \\,\\,,\\,\\, u_0= \\begin{bmatrix} 0.6\\\\0.8 \\end{bmatrix} A=\[1123\],u0=\[0.60.8

解:
y 0 = u 0 ∣ ∣ u 0 ∣ ∣ ∞ = [ 0.75 1.00 ] y_0= \frac{u_0}{||u_0||_\infty}= \begin{bmatrix} 0.75\\ 1.00 \end{bmatrix} y0=∣∣u0∣∣∞u0=[0.751.00]
u 1 = A y 0 = [ 2.75 3.75 ] u_1=Ay_0 = \begin{bmatrix} 2.75\\3.75 \end{bmatrix} u1=Ay0=[2.753.75]

在 y 0 {y_0} y0 中 1 {1} 1 在下面,所以近似最大特征值
β 1 = 3.75 \beta_1= 3.75 β1=3.75

特征向量
y 1 = u 1 ∣ ∣ u 1 ∣ ∣ ∞ = [ 0.7333 1.0000 ] y_1= \frac{u_1}{||u_1||_\infty}= \begin{bmatrix} 0.7333\\ 1.0000 \end{bmatrix} y1=∣∣u1∣∣∞u1=[0.73331.0000]

乘幂法matlab实现

matlab 复制代码
%% 乘幂法例子
A = [12 6 -6; 6 16 2; -6 2 16];
u0 = [1.0, 0.5, -0.5]';
format long
[beta1, i] = powerMethod(A, u0, 1e-6, 10)

%% 乘幂法求模最大特征值和特征向量
% 输入矩阵、初始迭代向量、精度、最大迭代次数
% 输出特征值、无穷范数归一化后的特征向量、迭代次数
function [lbd, y1, i] = powerMethod(A, u0, eps, max_iter)
    [u0norm, id] = max(abs(u0)); % 取无穷范数和其所在行
    beta0 = u0(id);
    y0 = u0/ u0norm;
    for i = 1:max_iter
        u1 = A*y0;
        beta1 = u1(id);
        [u1norm, id] = max(abs(u1));
        y1 = u1/u1norm;
        if abs(beta1 - beta0)<eps
            lbd = beta1;
            break;
        end
        y0 = y1; % 当前变成过去
        beta0 = beta1;
    end
end
相关推荐
C++ 老炮儿的技术栈13 分钟前
UDP 与 TCP 的区别是什么?
开发语言·c++·windows·算法·visual studio
wgslucky18 分钟前
Dubbo报错:module java.base does not “opens java.lang“ to unnamed module
java·开发语言·dubbo
whyeekkk40 分钟前
python打卡第48天
开发语言·python
DougLiang2 小时前
关于easyexcel动态下拉选问题处理
java·开发语言
全职计算机毕业设计2 小时前
基于Java Web的校园失物招领平台设计与实现
java·开发语言·前端
5:003 小时前
云备份项目
linux·开发语言·c++
笨笨马甲3 小时前
Qt Quick模块功能及架构
开发语言·qt
夜晚回家4 小时前
「Java基本语法」代码格式与注释规范
java·开发语言
YYDS3144 小时前
C++动态规划-01背包
开发语言·c++·动态规划
前端页面仔4 小时前
易语言是什么?易语言能做什么?
开发语言·安全