[spark] dataframe的cache方法

在 Apache Spark 中,DataFrame 的 cache 方法用于将 DataFrame 的计算结果缓存到内存中,以便在后续的操作中能够更快地访问这些数据。这对于在多个阶段使用相同的 DataFrame 数据时是非常有用的,可以避免重复计算。

文章目录

cache用法

具体来说,cache 方法执行以下操作:

  1. 将 DataFrame 的计算结果缓存到 Spark 集群的内存中。
  2. 用新的 DataFrame 代替原始的 DataFrame,新的 DataFrame 从缓存中读取数据,而不是重新计算。

以下是一个简单的示例:

scala 复制代码
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder.appName("DataFrameCache").getOrCreate()

// 假设 df 是你的 DataFrame
val df = spark.read.format("csv").load("your_data.csv")

// 缓存 DataFrame 的计算结果到内存中
df.cache()

// 使用缓存后的 DataFrame 进行多次操作
val result1 = df.filter("some_condition").groupBy("column").agg("agg_column" -> "sum")
val result2 = df.filter("another_condition").groupBy("column").agg("agg_column" -> "avg")

result1.show()
result2.show()

在上述代码中,df.cache() 将 DataFrame df 的计算结果缓存到内存中。之后,我们可以在后续的操作中使用 result1result2,Spark 将尽可能使用缓存中的数据,而不是重新计算。

需要注意的是,缓存操作可能会导致额外的内存开销,因此需要谨慎使用,特别是当数据量较大时。

可以使用 unpersist() 方法来手动释放缓存,

或者在不再需要缓存时调用 df.unpersist() 来释放资源。

SparkOutOfMemoryError解决

在 Spark 中,使用 cache 方法将数据缓存到内存中可能会导致 SparkOutOfMemoryError 错误,尤其是在数据量较大、集群资源不足或者缓存的数据量超过可用内存时。这是因为缓存大量数据可能会导致内存不足,从而触发 OutOfMemory 错误。

为了避免这种情况,可以考虑以下几点:

  1. 合理分配资源: 在 Spark 应用程序中,确保为每个任务分配的资源是合理的。这包括 executor 内存、CPU 核心数等。过度分配资源可能导致内存不足。

  2. 合理使用缓存: 考虑缓存的数据量和内存资源之间的平衡。不要缓存超出可用内存的数据量。如果数据量很大,可以考虑使用StorageLevel参数来调整缓存级别,例如使用 MEMORY_ONLY_SERMEMORY_ONLY_SER_2,这将以序列化的形式存储数据,减少内存占用。

  3. 及时释放缓存: 当不再需要缓存的数据时,及时使用 unpersist 方法释放缓存。避免将不必要的数据一直保存在内存中。

scala 复制代码
// 缓存 DataFrame
df.cache()

// 使用缓存后的 DataFrame 进行操作

// 释放缓存
df.unpersist()
  1. 考虑使用硬盘存储: 如果数据量非常大,而内存不足以容纳所有数据,可以考虑使用硬盘存储,例如 DISK_ONLYMEMORY_AND_DISK 存储级别。
scala 复制代码
df.persist(StorageLevel.DISK_ONLY)

综合考虑这些因素,可以有效地管理内存资源,避免 SparkOutOfMemoryError 错误。

StorageLevel.DISK_ONLY 数据会保存到哪

使用 df.persist(StorageLevel.DISK_ONLY) 将 DataFrame 缓存到硬盘时,数据会被保存在 Spark 集群的本地文件系统上。这是指每个 Spark Executor 的本地文件系统,而不是你提交 Spark 应用程序的主节点或 HDFS。

具体来说:

  1. 本地文件系统: 对于每个 Executor,Spark 会在其本地文件系统上创建一个目录,称为存储目录(Storage Directory)。数据将被写入并存储在这个目录中。

  2. Executor 的工作目录: 存储目录通常位于 Executor 的工作目录中。这是 Executor 专用的目录,用于存储缓存的数据和其他 Spark 相关的临时文件。

  3. 数据分布: 数据将被分布在集群中的多个 Executor 上,每个 Executor 存储其分配到的数据。

需要注意的是,这种存储方式是相对于内存缓存而言的,是一种牺牲速度来换取存储容量和持久性的做法。存储在硬盘上的数据在需要时可以从硬盘读取到内存中,但相对于内存缓存而言,读取速度会较慢。

当你使用 df.persist(StorageLevel.DISK_ONLY) 时,Spark 会根据需要将数据写入和读取出这些存储目录。因此,确保每个 Executor 的本地文件系统有足够的空间,以容纳缓存的数据。

相关推荐
A尘埃2 分钟前
关闭超时订单和七天自动确认收货+RabbitMQ规范
分布式·rabbitmq
2501_903238655 分钟前
深入理解 Kafka 主题分区机制
分布式·kafka·个人开发
m0_748241235 分钟前
RabbitMq 基础
分布式·rabbitmq·ruby
跨境卫士小树34 分钟前
店铺矩阵崩塌前夜:跨境多账号运营的3个生死线
大数据·线性代数·矩阵
roman_日积跬步-终至千里1 小时前
【Flink 实战】Flink 中 Akka 通信与内存占用分析
大数据·flink
黄名富2 小时前
Spring Cloud — Hystrix 服务隔离、请求缓存及合并
java·分布式·spring·spring cloud·hystrix·微服务
南风过闲庭2 小时前
操作系统研究
大数据·人工智能·科技·学习·ai·系统架构
阿里云大数据AI技术2 小时前
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
大数据·阿里云·spark·serverless·emr
亿信华辰软件2 小时前
政策解读:制造企业如何实施数字化转型
大数据·数据分析·制造
资讯新鲜事2 小时前
重构建筑未来:中建海龙MiC建筑技术开启智慧建造新篇章
大数据·人工智能