linux cuda环境搭建

1,检查驱动是否安装

运行nvidia-smi,如果出现如下界面,说明驱动已经安装

记住cuda版本号

2,安装cudatoolkit

上官网CUDA Toolkit Archive | NVIDIA Developer 根据操作系统选择对应的toolkit

如果已经安装了驱动,选择的toolkit版本不要高于driver的cuda版本。如果未安装,选择一个较新的版本即可

选定版本后,网站上会出现安装指令,如下

复制代码
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sh cuda_11.3.0_465.19.01_linux.run

如果已经安装了驱动,在安装过程中把驱动选项去掉。并且在安装完成后配置~/.bashrc,添加

复制代码
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
​​​​​​​export PATH=/usr/local/cuda/bin:$PATH

source ~/.bashrc

安装完成后

运行nvcc --version验证是否安装成功

不要用apt install nvidia-cuda-toolkit安装,一般安装的版本会比较低。

3,安装cudnn

一般在安装tensorflow或者pytorch的gpu版本时会自动安装上cudnn。

如果提示找不到cudnn库,需要手动安装。上cuDNN Archive | NVIDIA Developer下载对应版本的库

解压后将lib目录下文件拷到/usr/local/cuda/lib64下,将include下文件拷到/usr/local/cuda/include下

备注

1,卸载toolkit

运行 /usr/local/cuda/bin/cuda-uninstaller

2,修改安装位置

sh cuda_11.3.0_465.19.01_linux.run --installpath=/mnt/mount/cuda

3,安装pytorch

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch

此处选择的cudatoolkit版本与前面安装的对应上

验证是否安装成功

复制代码
import torch
​​​​​​​print(torch.__version__):查看torch版本
print(torch.cuda.is_available()):看安装好的torch和cuda能不能用,也就是看GPU能不能用

4,有时显卡内存占用明显大于nvidia-smi下显示的进程占用

可以用命令fuser -v /dev/nvidia* 查看所有占用显存的进程

5,Jitting卡住的问题

如果在之前运行这个程序时,趁加锁之后突然kill掉这个程序,导致它还没来得及释放锁,这样锁就会一直存在,导致后续所有程序都无法读取该库文件。

到~/.cache/torch_extensions/py310_cu113目录下找到lock文件删除

相关推荐
___波子 Pro Max.3 分钟前
Linux快速查看文件末尾字节方法
linux
rit84324994 分钟前
基于MATLAB的BP神经网络手写数字识别
开发语言·神经网络·matlab
Caster_Z43 分钟前
WinServer安装VM虚拟机运行Linux-(失败,云服务器不支持虚拟化)
linux·运维·服务器
少废话h2 小时前
Redis主从与集群搭建全指南
大数据·linux·redis·mysql
Cheadmaster2 小时前
20252820_进程管理实验
linux
model20053 小时前
Alibaba linux 3安装LAMP(5)
linux·运维·服务器
哇哈哈&3 小时前
安装wxWidgets3.2.0(编译高版本erlang的时候用,不如用rpm包),而且还需要高版本的gcc++19以上,已基本舍弃
linux·数据库·python
minihuabei5 小时前
跨域拉镜像
linux
王 富贵6 小时前
【Linux】防火墙常用命令(iptables/firewalld/ufw)
linux·运维·服务器
写代码的【黑咖啡】6 小时前
Linux系统简介及常用命令分类详解
linux·运维·服务器