机器学习系列11:减少过拟合——L1、L2正则化

如果我们注意到模型在训练集上的表现明显优于模型在测试集上的表现,那么这就是模型过拟合了,也称为 high variance。

产生的过拟合的原因是对于给定的训练集数据来说,模型太复杂了。有几种可以减少过拟合的方法:

  • 收集更多的训练数据(通常可行性不大)

  • 通过正则化引入对模型复杂度的惩罚

  • 选择一个含有较少参数的简单模型

  • 减少数据的维度

假设模型的参数是向量 w,那么 L1 和 L2 正则化的定义如下。

L1 正则化通常会产生更稀疏的特征空间,大部分的特征对应的权重都是 0。

如果我们在处理高维且大多数特征都互不相关的数据集时,稀疏性就会十分有用,尤其是在训练数据集样本数比样本特征数还少时。此时 L1 正则化也可以被视为是一种特征选择工具,我们将在下一课学习特征选择。

我们在训练机器学习模型时的目标是使模型在训练集和测试集上的损失不断降低,损失是通过损失函数计算出来的。L1 正则化和 L2 正则化就是在损失函数后面再加上惩罚模型复杂度的因子,并且还附带一个取值在 [0.0, 1.0] 之前的参数 λ 控制惩罚力度。

在 scikit-learn 库中,我们只需要指定 penalty='l1' 或 penalty='l2' 就可以选择使用 L1 还是 L2 正则化了。注意!solver 参数指定了优化算法,lbfgs 优化算法不支持 L1 正则化。

我们用逻辑回归算法拟合了经过标准化的红酒数据集后发现,模型在训练集和测试集上的准确率都达到了 100%!

除此之外,你可能还注意到还有两个参数:

  • C 就是 λ 的倒数,默认值是 1.0

  • multi_class='ovr',这表示使用 one-versus-rest 方法将二分类模型应用到多分类

one-versus-rest(OVR)也称为 one-versus-all,是一种将二分类模型应用到多分类任务中的方法。以红酒数据集为例,这是数据集具有三种类别,那么就训练三个二分类器,每个二分类器都将其中一种类别作为正例,其他两种类别作为反例。最终预测时选择得分结果最高的分类器预测的正例对应的类别作为最终的预测类别。

我们可以看到有 3 个权重和对应的偏置(bias)。

我们也能看到有几个特征对应的权重值为 0,所以 L1 正则化也能用作特征选择。我们可以增大正则化项系数 λ(减小参数 C)时会剔除更多的特征,当 C < 0.01(λ > 100)时,所有特征对应的权重都是 0。

相关推荐
胡玉洋27 分钟前
从新手到高手:全面解析 AI 时代的「魔法咒语」——Prompt
人工智能·ai·prompt·transformer·协议
是店小二呀27 分钟前
Trae 插件 Builder 模式:从 0 到 1 开发天气查询小程序,解锁 AI 编程新体验
人工智能·ai编程·trae
kyle~40 分钟前
深度学习框架---TensorFlow概览
人工智能·深度学习·tensorflow
CodeJourney.1 小时前
ChemBlender:科研绘图创新解决方案
数据库·人工智能·信息可视化·excel
电鱼智能的电小鱼1 小时前
产线视觉检测设备技术方案:基于EFISH-SCB-RK3588/SAIL-RK3588的国产化替代赛扬N100/N150全场景技术解析
linux·人工智能·嵌入式硬件·计算机视觉·视觉检测·实时音视频
妄想成为master1 小时前
计算机视觉----基于锚点的车道线检测、从Line-CNN到CLRNet到CLRKDNet 本文所提算法Line-CNN 后续会更新以下全部算法
人工智能·计算机视觉·车道线检测
夜幕龙1 小时前
LeRobot 项目部署运行逻辑(七)—— ACT 在 Mobile ALOHA 训练与部署
人工智能·深度学习·机器学习
未来之窗软件服务2 小时前
人体肢体渲染-一步几个脚印从头设计数字生命——仙盟创梦IDE
开发语言·ide·人工智能·python·pygame·仙盟创梦ide
戌崂石2 小时前
最优化方法Python计算:有约束优化应用——线性不可分问题支持向量机
python·机器学习·支持向量机·最优化方法
Echo``2 小时前
40:相机与镜头选型
开发语言·人工智能·深度学习·计算机视觉·视觉检测