【AI】图像识别和无人零售

目录

一、引言

二、AI商品识别的定义

三、所用技术

四、解决方案的种类

五、发展历程

六、瓶颈

七、未来趋势


一、引言

随着人工智能(AI)技术的飞速发展,AI商品识别已经成为无人零售领域的一项关键技术。特别是在智能无人售货柜等场景中,AI商品识别技术发挥着越来越重要的作用。本文将详细介绍AI商品识别的定义、所用技术、解决方案的种类、发展历程、瓶颈以及未来趋势。

二、AI商品识别的定义

AI商品识别,即利用人工智能技术,通过图像识别、深度学习等方法,自动识别商品信息。在无人零售领域,AI商品识别技术可以帮助商家实现自动售货、库存管理、商品推荐等功能,从而提高运营效率,降低成本,提升用户体验。

三、所用技术

  1. 图像识别技术:通过对商品的图像进行分析和处理,提取特征并与已知数据库中的商品信息进行比对,从而实现对商品的准确识别。
  2. 深度学习技术:利用深度神经网络对大量商品图像进行训练和学习,使模型具备对商品图像的自动分类和识别能力。
  3. 计算机视觉技术:通过对摄像头捕捉到的视频流进行处理和分析,实时识别顾客的购物行为和商品信息。

四、解决方案的种类

  1. 基于图像识别的AI商品识别:通过对商品图像进行特征提取和比对,实现对商品的快速准确识别。
  2. 基于深度学习的AI商品识别:利用深度神经网络对商品图像进行训练和学习,提高识别的准确性和效率。
  3. 基于计算机视觉的AI商品识别:结合图像识别和深度学习技术,实现对顾客购物行为和商品信息的实时识别和处理。

在实际应用的过程中,一般我们分为以下几种:

  1. 静态视觉识别:就是对比前后两张照片,看少了哪些商品,生成订单。如果是多了东西,那就会被识别为异物,报警处理;
  2. 动态视觉识别:通过摄像头采集的购物视频,对比消费者取出的商品,符合云库中的哪一个,或者哪几个,生成订单。目前提供这个技术的算法厂家以旷视科技为代表,综合运营商如嗨便利等。实际上,在现实应用中,运营商都会雇佣一定数量的人工,对特殊订单,进行人工识别,通过AI+人工,识别准确率,基本能达到99%以上。
  3. 动态视觉+重力:这其实是两种方法同时使用。重力感应,在一定程度上起到辅助作用,对于非标产品,作用比较明显,对于都是500ML的矿泉水来说,作用就为0了,反而要支付较高的硬件成本。因此,重力感应模块,在现实中,是面临被淘汰的尴尬。

五、发展历程

AI商品识别技术的发展经历了以下几个阶段:

  1. 早期阶段:主要依赖人工进行商品识别和分类,效率低下且易出错。
  2. 图像识别阶段:随着图像识别技术的发展,开始尝试利用计算机对商品图像进行自动识别和分类。
  3. 深度学习阶段:深度学习技术的兴起为AI商品识别带来了突破性的进展,大大提高了识别的准确性和效率。
  4. 计算机视觉阶段:计算机视觉技术的加入使得AI商品识别能够实现实时处理和响应,为顾客提供更加便捷和智能的购物体验。

六、瓶颈

尽管AI商品识别技术已经取得了显著的进步,但在实际应用中仍然面临一些挑战和瓶颈:

  1. 数据标注问题:深度学习模型需要大量标注数据进行训练,而商品图像的标注工作量大且成本高。
  2. 商品多样性问题:由于商品种类繁多、形状各异,对AI商品识别技术的泛化能力提出了更高要求。
  3. 光照和环境干扰:不同光照条件和拍摄角度会影响商品图像的质量,进而影响识别效果。
  4. 实时性要求:在智能无人售货柜等场景中,需要实时处理大量图像数据并作出响应,对计算资源和算法性能有较高要求。

目前,除了具备边缘计算能力的无人零售设备,都是需要将视频上传到云端进行处理的。上传根据基站、运营商的情况,普遍需要30秒左右的时间。上行速率,一般都是10M作用,个别5G设备,效果当然更好,但是成本还是稍微高些。

还有一些瓶颈,就是消费者的异常行为,比如遮挡、超长时间购物、恶意行为等,都需要综合运营手段和技术手段,来共同解决。

还有一种情况,就是两种包装非常相似的产品,比如王老吉和加多宝,都是红罐的时候,还是很容易被识别错的。最终难免要依靠人工来补充。

七、未来趋势

展望未来,AI商品识别技术将在以下几个方面取得进一步发展:

  1. 数据增强与迁移学习:通过数据增强技术和迁移学习方法降低对数据标注的依赖,提高模型的泛化能力。
  2. 模型优化与轻量化:针对实时性要求高的场景,研究更高效的算法和模型结构,降低计算资源消耗。
  3. 多模态融合:结合图像、文本、语音等多种信息源进行商品识别,提高识别的准确性和鲁棒性。
  4. 智能交互与个性化推荐:将AI商品识别技术与智能交互、个性化推荐等技术相结合,为顾客提供更加智能化和个性化的购物体验。
相关推荐
非门由也3 分钟前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy3 分钟前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也3 分钟前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
计算机毕业设计指导14 分钟前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊18 分钟前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能1 小时前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元1 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai
机器之心1 小时前
全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
人工智能·openai
新智元1 小时前
2025年了,AI还看不懂时钟!90%人都能答对,顶尖AI全军覆没
人工智能·openai
湫兮之风1 小时前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉