二分查找——OJ题(二)

📘北尘_个人主页
🌎个人专栏 :《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录


一、点名

1、题目讲解

2、算法原理

关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。

本题只讲解⼀个最优的⼆分法,来解决这个问题。

在这个升序的数组中,我们发现:

▪ 在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的;

▪ 在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。

3、代码实现

cpp 复制代码
class Solution {
public:
    int takeAttendance(vector<int>& records) {
        int left=0,right=records.size()-1;
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(records[mid]==mid) left=mid+1;
            else right=mid;
        }
        return records[left]==left?left+1:left;
    }
};

二、搜索旋转排序数组中的最⼩值

1、题目讲解


2、算法原理

其中 C 点就是我们要求的点。

⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。

通过图像我们可以发现, [A,B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C,D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。

因此,初始化左右两个指针 left , right :

然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间:

▪ 当 mid 在 [A,B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1,right] 上;

▪ 当 mid 在 [C,D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次查询区间在 [left,mid] 上。

当区间⻓度变成 1 的时候,就是我们要找的结果。

3、代码实现

cpp 复制代码
class Solution {
public:
    int findMin(vector<int>& nums) {
        int left=0,right=nums.size()-1,n=nums.size();
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>nums[n-1]) left=mid+1;
            else right=mid;
        }
        return nums[left];

    }
};

三、寻找峰值

1、题目讲解

2、算法原理

寻找⼆段性:

任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况:

• arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果;

• arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果。

3、代码实现

cpp 复制代码
class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left=0,right=nums.size()-1;
        while(left<right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<nums[mid+1]) left=mid+1;
            else right=mid;
        }
        return left;
    }
};

四、山峰数组的峰顶

1、题目讲解


2、算法原理

  1. 分析峰顶位置的数据特点,以及⼭峰两旁的数据的特点:
    ◦ 峰顶数据特点: arr[i] > arr[i - 1] && arr[i] > arr[i + 1] ;
    ◦ 峰顶左边的数据特点: arr[i] > arr[i - 1] && arr[i] < arr[i + 1] ,也就是呈现上升趋势;
    ◦ 峰顶右边数据的特点: arr[i] < arr[i - 1] && arr[i] > arr[i + 1] ,也就是呈现下降趋势。
  2. 因此,根据 mid 位置的信息,我们可以分为下⾯三种情况:
    ◦ 如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;
    ◦ 如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;
    ◦ 如果 mid 位置就是⼭峰,直接返回结果。

3、代码实现

cpp 复制代码
class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        int left=1,right=arr.size()-2;
        while(left<right)
        {
            int mid=left+(right-left+1)/2;
            if(arr[mid]>arr[mid-1]) left=mid;
            else right=mid-1;
        }
        return left;
    }
};

相关推荐
闪电麦坤9531 分钟前
数据结构:递归的种类(Types of Recursion)
数据结构·算法
互联网杂货铺1 小时前
完美搭建appium自动化环境
自动化测试·软件测试·python·测试工具·职场和发展·appium·测试用例
Gyoku Mint1 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
纪元A梦1 小时前
分布式拜占庭容错算法——PBFT算法深度解析
java·分布式·算法
px不是xp2 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
枫景Maple3 小时前
LeetCode 2297. 跳跃游戏 VIII(中等)
算法·leetcode
鑫鑫向栄3 小时前
[蓝桥杯]修改数组
数据结构·c++·算法·蓝桥杯·动态规划
鑫鑫向栄3 小时前
[蓝桥杯]带分数
数据结构·c++·算法·职场和发展·蓝桥杯
枷锁—sha3 小时前
护网行动面试试题(2)
web安全·面试·职场和发展