【数值分析】LU分解解Ax=b,matlab自己编程实现

LU分解(直接三角分解,Doolittle分解)

A x = b    ,    A = L U Ax=b \,\,,\,\, A=LU Ax=b,A=LU
{ L y = b U x = y \begin{cases} Ly=b \\ Ux=y \end{cases} {Ly=bUx=y

矩阵 L {L} L 的对角元素为 1 {1} 1 ,矩阵 U {U} U 的第一行和 A {A} A 相同。

步骤:

  1. 矩阵 L 的对角元素为 1 ,矩阵 U 的第一行和 A 相同。 2. 迭代    ,    j = 1 , 2 , ⋯ n − 1 算 L 的第 j 列    ,    L i , j = A i , j − ∑ r = 1 j − 1 L i , r U r , j U j , j , i = j + 1 , j + 2 , ⋯   , n 算 U 的第 j + 1 行    ,    U j + 1 , k = A j + 1 , k − ∑ r = 1 j L j + 1 , r U r , k L j + 1 , j + 1 , k = j + 1 , j + 2 , ⋯   , n 3. 回代    ,    y i = b i − ∑ j = 1 i − 1 L i , j y j , i = 1 , 2 , ⋯   , n x i = y i − ∑ j = i + 1 n x j ⋅ U i , j U i , i    ,    i = n , n − 1 , ⋯   , 1 \begin{align*} 1.& 矩阵 L 的对角元素为 1 ,矩阵U 的第一行和A相同。 \\ \\ 2. & 迭代 \,\,,\,\, j=1,2, \cdots n-1 \\ \\ &算L的第j列 \,\,,\,\, L_{i,j}= \frac{A_{i,j}- \sum_{r=1}^{j-1}L_{i,r}U_{r,j}}{U_{j,j}},i=j+1,j+2,\cdots ,n \\ \\ &算U的第j+1行 \,\,,\,\, U_{j+1,k}= \frac{A_{j+1,k}- \sum_{r=1}^{ j}L_{j+1,r}U_{r,k}}{L_{j+1,j+1}} ,k=j+1,j+2,\cdots ,n \\ \\ 3.& 回代 \,\,,\,\, \\ \\ & y_i= b_i- \sum_{j=1}^{ i-1}L_{i,j}y_j,i=1,2,\cdots ,n \\ \\ &x_i= \frac{y_i- \sum_{j=i+1}^{ n}x_j \cdot U_{i,j}}{U_{i,i}} \,\,,\,\, i=n,n-1, \cdots ,1 \end{align*} 1.2.3.矩阵L的对角元素为1,矩阵U的第一行和A相同。迭代,j=1,2,⋯n−1算L的第j列,Li,j=Uj,jAi,j−∑r=1j−1Li,rUr,j,i=j+1,j+2,⋯,n算U的第j+1行,Uj+1,k=Lj+1,j+1Aj+1,k−∑r=1jLj+1,rUr,k,k=j+1,j+2,⋯,n回代,yi=bi−j=1∑i−1Li,jyj,i=1,2,⋯,nxi=Ui,iyi−∑j=i+1nxj⋅Ui,j,i=n,n−1,⋯,1

matlab实现

matlab 复制代码
%% Ax=b例子
A = [16 -12 2 4;
    12 -8 6 10;
    3 -13 9 23;
    -6 14 1 -28];
b = [17 36 -49 -54]';
[x,L,U] = LUsolve(A,b)

%% LU分解解Ax=b
% 输入方阵A,向量b
% 输出解x,L、U矩阵
function [x,L,U] = LUsolve(A,b)
    n = size(A);
    L = eye(n);
    U(1,[1:n]) = A(1,[1:end]);
    for j = 1:n-1 % 对U是行号,对L是列号
        for i = j+1:n % 算L第i行j列
            L(i,j) = A(i,j);
            for r = 1:j-1
                L(i,j) = L(i,j)- L(i,r)*U(r,j);
            end
            L(i,j) = L(i,j)/U(j,j);
        end
        for k = j+1:n % 算U第j+1行k列
            U(j+1,k) = A(j+1,k);
            for r = 1:j
                U(j+1,k) = U(j+1,k)-L(j+1,r)*U(r,k);
            end
            U(j+1,k) = U(j+1,k)/L(j+1,j+1);
        end
    end
    % 回代
    for i = 1:n
        y(i) = b(i);
        for j = 1:i-1
            y(i) = y(i)-L(i,j)*y(j);
        end
    end
    for i=n:-1:1 
        x(i) = y(i);
        for j=n:-1:i+1
            x(i) = x(i)-U(i,j)*x(j);
        end
        x(i) = x(i)/U(i,i);
    end
    x = x';
end
相关推荐
民乐团扒谱机3 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Evand J3 小时前
TDOA(到达时间差)的GDOP和CRLB计算的MATLAB例程,论文复现,附参考文献。GDOP:几何精度因子&CRLB:克拉美罗下界
开发语言·matlab·tdoa·crlb·gdop
_OP_CHEN6 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
机器学习之心HML7 小时前
MATLAB豆渣发酵工艺优化 - 基于响应面法结合遗传算法
matlab
芷栀夏7 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人16 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_19 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
aini_lovee1 天前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
lbb 小魔仙1 天前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗1 天前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵