2023春季李宏毅机器学习笔记 01 :正确认识 ChatGPT

资料

一、对Chatgpt的误解

常见误解

  1. 给出的回答不是已经准备好的(罐头回应×)
  2. 不是网络上搜索得出的答案(甚至有很多幻想出来的答案)

原理

二、预训练

ChatGPT:chat Generative Pre-trained Transformer

关键技术:

  • Pre-train(预训练)=Self supervised Leaarning(自督导式学习)
  • Foundation Model:基石模型
  • Fintune:微调

三、ChatGPT带来的研究问题

  1. 如何精准提出需求?
    目前使用的方法:Prompting
    创新点:有没有比人工尝试更加系统性的方法?
  2. 如何更正错误?
    目前没有较好的解决方法
    创新点:新研究题目Neural Editing
  3. 甄别AI生成的内容
  4. 泄露秘密、隐私信息
    创新点:新的研究题目:Machine Unlearning

四、文字冒险游戏

五、ChatGPT是怎么练成的?

ChatGPT的"兄弟":InstructGPT,论文地址:https://arxiv.org/abs/2203.02155

ChatGPT学习四阶段

  1. 学习文字接龙

    不需要人工标注,在网络上收集语句,对输入句子(字)后面可以接的字进行概率统计,每次输出高概率的字(每一次输出都不同)

  2. 人类老师引导文字接龙方向

    人来思考问题,并人工提供答案(不需要很多,目的只是为了让GPT知道人们希望得到的答案)

  3. 模仿人类老师的喜好

    训练Teacher Model让希望输出的答案的"分数"大于其他输出

  4. 用增强式学习向模拟老师学习

六、延伸学习

分类

回归

相关推荐
沐雪架构师9 分钟前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)1 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui1 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20252 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥2 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
追求源于热爱!2 小时前
记5(一元逻辑回归+线性分类器+多元逻辑回归
算法·机器学习·逻辑回归
云空3 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代3 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
爱喝奶茶的企鹅4 小时前
构建一个研发助手Agent:提升开发效率的实践
机器学习
山晨啊84 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习