2023春季李宏毅机器学习笔记 01 :正确认识 ChatGPT

资料

一、对Chatgpt的误解

常见误解

  1. 给出的回答不是已经准备好的(罐头回应×)
  2. 不是网络上搜索得出的答案(甚至有很多幻想出来的答案)

原理

二、预训练

ChatGPT:chat Generative Pre-trained Transformer

关键技术:

  • Pre-train(预训练)=Self supervised Leaarning(自督导式学习)
  • Foundation Model:基石模型
  • Fintune:微调

三、ChatGPT带来的研究问题

  1. 如何精准提出需求?
    目前使用的方法:Prompting
    创新点:有没有比人工尝试更加系统性的方法?
  2. 如何更正错误?
    目前没有较好的解决方法
    创新点:新研究题目Neural Editing
  3. 甄别AI生成的内容
  4. 泄露秘密、隐私信息
    创新点:新的研究题目:Machine Unlearning

四、文字冒险游戏

五、ChatGPT是怎么练成的?

ChatGPT的"兄弟":InstructGPT,论文地址:https://arxiv.org/abs/2203.02155

ChatGPT学习四阶段

  1. 学习文字接龙

    不需要人工标注,在网络上收集语句,对输入句子(字)后面可以接的字进行概率统计,每次输出高概率的字(每一次输出都不同)

  2. 人类老师引导文字接龙方向

    人来思考问题,并人工提供答案(不需要很多,目的只是为了让GPT知道人们希望得到的答案)

  3. 模仿人类老师的喜好

    训练Teacher Model让希望输出的答案的"分数"大于其他输出

  4. 用增强式学习向模拟老师学习

六、延伸学习

分类

回归

相关推荐
985小水博一枚呀28 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan29 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀32 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路42 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川5 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程