python 深度学习 记录遇到的报错问题11

本篇继python 深度学习 记录遇到的报错问题10-CSDN博客

六、ValueError: cannot convert float NaN to integer

报错:

原因:这个错误通常是因为在尝试将NaN值转换为整数时发生的。NaN表示"非数字",它无法转换为整数。在 Python 中,NaN 表示 Not a Number,表示数据集中缺失的条目。 它是一种特殊的 float 值,不能转换为 float 以外的其他类型。

解决方法:先检查代码是否有不合理的地方,如果代码没有逻辑错误。

(1)然后检查输入数据,确保没有NaN值。例如,使用Pandas DataFrame时,可以使用.isna()方法检查数据中是否有NaN值。

(2)在转换之前检查数据类型,确保它们是可以转换为整数的数据类型。例如,在Python中,可以使用内置的isinstance()函数来检查数据类型。

(3)也可以使用 fillna() 方法修复python错误 ValueError: cannot convert float NaN to integer

fillna() 方法用 Python 中的给定值替换 NaN 值, 它检查列中的 NaN 值并用指定值填充它们。

复制代码
df_new = df.fillna(0)
print(df_new)

(4)更新matplotlib_venn包,

复制代码
pip install --upgrade matplotlib_venn

七、AttributeError: module 'tensorflow' has no attribute 'reset_default_graph'

报错:

原因:这个错误是因为在TensorFlow 2.0及更高版本中,reset_default_graph函数已经被移除了。在TensorFlow 1.x版本中,reset_default_graph函数用于清除默认图形堆栈并重置全局默认图形。但在TensorFlow 2.0及更高版本中,由于引入了急切执行(Eager Execution)模式,不再需要使用此函数。

解决方法:如果你需要在TensorFlow 2.0中使用类似于reset_default_graph的功能,你可以创建一个新的tf.Graph实例,并使用tf.function装饰器将你的计算封装在这个新图中。这样,每次你创建一个新的tf.Graph实例时,都相当于重置了图形。

八、If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.

解决方法:

在当前conda环境下,先卸载已经安装了的版本,

复制代码
pip uninstall protobuf

重新安装3.20版本,

复制代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple protobuf==3.19.6

九、undefined symbol: __nvJitLinkAddData_12_1, version libnvJitLink.so.12

报错:undefined symbol: __nvJitLinkAddData_12_1, version libnvJitLink.so.12

原因:

解决:linux服务器安装gpu版本的pytorch

运行命令,首先看一下cuda的版本,我的是右上角显示12.2,

复制代码
nvidia-smi

选择Linux ,这里没有我的cuda12.2版本,

找过往版本Previous PyTorch Versions | PyTorch

发现有12.1版本,但是没有12.2版本,查阅得知可以向下兼容安装12.1版本的,

因此就使用这个命令安装。

复制代码
conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia

十、AttributeError: module 'networkx' has no attribute 'read_gpickle'

报错:

原因:安装的是networkx的2.8版本。在networkx 2.8版本中,确实没有read_gpickle函数。

解决方法:如果你需要使用read_gpickle函数,你可以尝试升级到较新的版本。

复制代码
pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com networkx==2.8.8

OK,问题解决。

相关推荐
AI营销快线几秒前
原圈科技推动AI营销内容生产升级,打造企业级多智能体协作新范式
人工智能
人工智能技术咨询.1 分钟前
DNN案例一步步构建深层神经网络(4)
人工智能
Good kid.1 分钟前
【原创】基于 RoBERTa 的智能垃圾分类系统(规则 + AI 混合,FastAPI 接口 + Web Demo)
人工智能·分类·fastapi
山土成旧客2 分钟前
【Python学习打卡-Day24】从不可变元组到漫游文件系统:掌握数据结构与OS模块
数据结构·python·学习
qdprobot3 分钟前
齐护机器人AiTallpro小智AI图形化编程Mixly Scratch MQTT MCP远程控制
人工智能·mqtt·机器人·图形化编程·ai对话·mcp·小智ai
北京耐用通信4 分钟前
告别“蜘蛛网”布线!耐达讯自动化Profibus六路集线器:电力控制更简单
人工智能·科技·网络协议·自动化·信息与通信
AI营销快线5 分钟前
原圈科技AI营销内容生产助力SaaS企业增长新引擎
人工智能
技术小甜甜6 分钟前
[Python] 使用 Tesseract 实现 OCR 文字识别全流程指南
开发语言·python·ocr·实用工具
51camera6 分钟前
单色线阵相机结合特殊光源的多项检测解决方案
人工智能·计算机视觉
leo__52012 分钟前
MATLAB 实现 基分类器为决策树的 AdaBoost
开发语言·决策树·matlab