【数值分析】常微分方程的数值解,欧拉公式,梯形公式,龙格库塔公式,matlab实现

常微分方程初边值问题的数值解法

2023年11月30日

#analysis


文章目录


存在惟一解

一阶常微分方程初值问题的一般形式为:
{ d y d x = f ( x , y ) , a ≤ x ≤ b y ( a ) = α \begin{cases} \frac{\mathrm d y}{\mathrm dx} =f(x,y) ,&a\le x\le b \\ \\ y(a)= \alpha \end{cases} ⎩ ⎨ ⎧dxdy=f(x,y),y(a)=αa≤x≤b

其中 f {f} f 是 x {x} x 和 y {y} y 的已知函数, α { \alpha } α 为给定的初值。

Lipschitz利普希兹条件

若函数 f ( x , y ) {f(x,y)} f(x,y) 在区域 { a ≤ x ≤ b , m < y < M } { \lbrace a\le x\le b,m<y<M \rbrace} {a≤x≤b,m<y<M} 上连续,且关于 y {y} y 满足Lipschitz条件:
∣ f ( x , y ) − f ( x , y ˉ ) ∣ ≤ L ∣ y − y ˉ ∣    ,    ∀ y , y ˉ |f(x,y)-f(x,\bar y)|\le L|y-\bar y| \,\,,\,\, \forall y,\bar y ∣f(x,y)−f(x,yˉ)∣≤L∣y−yˉ∣,∀y,yˉ

其中 L > 0 {L>0} L>0 为Lipschiitz常数,则初值问题(在 a {a } a 的某邻域内)存在唯一解。此时Lipschitz常数不必小于 1 {1} 1 。

[!example]-
d y d x = 1 + x sin ⁡ ( x y )    ,    x ∈ [ 0 , 2 ] \frac{\mathrm d y}{\mathrm dx}=1+x\sin(xy) \,\,,\,\, x\in[0,2] dxdy=1+xsin(xy),x∈[0,2]
y ( 0 ) = 1 y(0)=1 y(0)=1

解:对任意 y {y} y , y ˉ {\bar y} yˉ ,对变量 y {y} y 应用微分中值定理,存在 y {y} y ,使得
f ( x , y ) − f ( x , y ˉ ) y − y ˉ = ∂ ∂ y f ( x , y ) = x 2 cos ⁡ ( x y ) \frac{f(x,y)-f(x,\bar y)}{y-\bar y}= \frac{\partial }{\partial y}f(x,y)=x^2\cos(xy) y−yˉf(x,y)−f(x,yˉ)=∂y∂f(x,y)=x2cos(xy)

于是有
∣ f ( x , y ) − f ( x , y ˉ ) ∣ = ∣ x 2 cos ⁡ ( x y ) ∣ ∣ y − y ˉ ∣ ≤ 4 ∣ y − y ˉ ∣ |f(x,y)-f(x,\bar y)|=|x^2\cos(xy)||y-\bar y|\le 4|y-\bar y| ∣f(x,y)−f(x,yˉ)∣=∣x2cos(xy)∣∣y−yˉ∣≤4∣y−yˉ∣

因而此时 f ( x , y ) {f(x,y)} f(x,y) 关于 y {y} y 满足Lipschitz条件,且常数 L = 4 {L=4} L=4 。因此从理论上讲,初值问题存在惟一解


差分公式的格式

Euler公式

y n + 1 = y n + h f ( x n , y n ) y_{n+1}=y_n+hf(x_n,y_n) yn+1=yn+hf(xn,yn)

matlab实现

matlab 复制代码
%% 欧拉公式例子 例9.1.1
[x,y] = odeEuler(@f,1,0,1,10);
[x' y']
function r = f(x,y)
    r = y-2*x./y;  % 导数公式
end
            
%% 欧拉公式求常微分方程初边值问题
% 输入函数,初值,起点,终点,区间数
% 输出每个点与对应的函数值
function [x,y] = odeEuler(f,y0,a,b,n)
    h = (b-a)/n;
    x = linspace(a,b,n+1);
    y(1)=y0;
    for i = 1:n
        y(i+1) = y(i)+h*f(x(i),y(i));
    end
end
梯形公式

y n + 1 = y n + h 2 ( f ( x n , y n ) + f ( x n + 1 , y n + 1 ) ) y_{n+1}=y_n+ \frac{h}{2}(f(x_n,y_n)+f(x_{n+1},y_{n+1})) yn+1=yn+2h(f(xn,yn)+f(xn+1,yn+1))

matlab实现,由于方程右边用到了左边的值,这里通过不动点迭代出 y n + 1 {y_{n+1}} yn+1

matlab 复制代码
%% 例9.1.2
[x,y] = odeTrapz(@f,1,0,1,10);
[x' y']
function r = f(x,y)
    r = y-2*x./y;
end
            
%% 梯形公式求常微分方程初边值问题
% 输入函数,初值,起点,终点,区间数
% 输出每个点与对应的函数值
function [x,y] = odeTrapz(f,y0,a,b,n)
    h = (b-a)/n;
    x = linspace(a,b,n+1);
    y(1)=y0;
    for i = 1:n
        t(1) = y(i)
        for j = 1:10000 % 不动点迭代法
            t(j+1) = y(i)+h/2*f(x(i),y(i))+h/2*f(x(i+1),t(j));
            if abs(t(j+1)-t(j))<1e-12
                y(i+1) = t(j+1);
                break;
            end
        end
    end
end
Euler中点公式

y n + 1 = y n − 1 + 2 h f ( x n , y n ) y_{n+1}=y_{n-1}+2hf(x_n,y_n) yn+1=yn−1+2hf(xn,yn)

课本上没提,这里不写了,接手这篇笔记的人可以补上。

改进Euler方法(预估-矫正公式)

{ y ˉ n + 1 = y n + h f ( x n , y n ) 预估 y n + 1 = y n + h 2 ( f ( x n , y n ) + f ( x n + 1 , y ˉ n + 1 ) ) 校正 y 0 = α , n = 0 , 1 , 2 , ⋯   , N − 1 \begin{cases} \bar y_{n+1}=y_n+hf(x_n,y_n) & 预估\\ y_{n+1}=y_n+ \frac{h}{2}(f(x_n,y_n)+f(x_{n+1},\bar y_{n+1})) & 校正\\ y_0= \alpha ,n=0,1,2, \cdots ,N-1 \end{cases} ⎩ ⎨ ⎧yˉn+1=yn+hf(xn,yn)yn+1=yn+2h(f(xn,yn)+f(xn+1,yˉn+1))y0=α,n=0,1,2,⋯,N−1预估校正

等价的平均化形式比上面的少算一次 f ( x , y ) {f(x,y)} f(x,y)
{ y p = y n + h f ( x n , y n ) y c = y n + h f ( x n + 1 , y p ) y n + 1 = 0.5 ( y p + y c ) \begin{cases} y_p=y_n+hf(x_n,y_n) \\ y_c = y_n+hf(x_{n+1},y_p) \\ y_{n+1}= 0.5(y_p+y_c) \end{cases} ⎩ ⎨ ⎧yp=yn+hf(xn,yn)yc=yn+hf(xn+1,yp)yn+1=0.5(yp+yc)

等价二阶二段龙格库塔格式
{ y n + 1 = y n + h 2 [ k 1 + k 2 ] k 1 = f ( x n , y n ) k 2 = f ( x n + h , y n + h k 1 ) y 0 = α , n = 0 , 1 , 2 , ⋯   , N − 1 \begin{cases} y_{n+1}=y_n+ \frac{h}{2}[k_1+k_2]\\ k_1=f(x_n,y_n)\\ k_2=f(x_n+h,y_n+hk_1)\\ y_0= \alpha ,n=0,1,2, \cdots ,N-1 \end{cases} ⎩ ⎨ ⎧yn+1=yn+2h[k1+k2]k1=f(xn,yn)k2=f(xn+h,yn+hk1)y0=α,n=0,1,2,⋯,N−1

改进欧拉公式精度高于欧拉公式,低于梯形公式,但比起梯形公式是显式格式,计算量较小,相对折中。

matlab实现

matlab 复制代码
[x,y] = odeIEuler(@f,1,0,1,10);
[x' y']
function r = f(x,y)
    r = y-2*x./y;
end
            
%% 改进Euler方法 平均化形式实现
% 输入函数,初值,起点,终点,区间数
% 输出每个点与对应的函数值
function [x,y] = odeIEuler(f,y0,a,b,n)
    h = (b-a)/n;
    x = linspace(a,b,n+1);
    y(1) = y0;
    for i = 1:n
        yp = y(i)+h*f(x(i),y(i));
        yc = y(i)+h*f(x(i+1),yp);
        y(i+1) = 0.5*(yp+yc);
    end
end

局部截断误差 y ( x n + 1 ) − y n + 1 {y(x_{n+1})-y_{n+1}} y(xn+1)−yn+1

局部截断误差的阶数

若单步差分公式的局部截断误差为 O ( h P + 1 ) {O(h^{P+1})} O(hP+1) ,则称该公式为 P {P} P 阶方法。
Taylor公式

一元Taylor公式:
y ( x n + 1 ) = y ( x n + h ) = y ( x n ) + y ′ ( x n ) h + y ′ ′ ( x n ) 2 ! h 2 + y ′ ′ ′ ( x n ) 3 ! h 3 + O ( h 4 ) y(x_{n+1})=y(x_n+h)=y(x_n)+y'(x_n)h+ \frac{y''(x_n)}{2!}h^2+ \frac{y'''(x_n)}{3!}h^3+O(h^4) y(xn+1)=y(xn+h)=y(xn)+y′(xn)h+2!y′′(xn)h2+3!y′′′(xn)h3+O(h4)

二元Taylor公式:
f ( x n + h , y n + k ) = f ( x n , y n ) + ∂ f ( x n , y n ) ∂ x h + ∂ f ( x n , y n ) ∂ y k + 1 2 ! ( ∂ 2 f ( x n , y n ) ∂ x 2 h 2 + 2 ∂ 2 f ( x n , y n ) ∂ x ∂ y h k + ∂ 2 f ( x n , y n ) ∂ y 2 k 2 ) + 1 m ! ( h ∂ ∂ x + k ∂ ∂ y ) m f ( x n , y n ) + ⋯ \begin{align*} f(x_n+h,y_n+k)=&f(x_n,y_n)+ \frac{\partial f(x_n,y_n)}{\partial x}h+ \frac{\partial f(x_n,y_n)}{\partial y}k \\ \\ &+ \frac{1}{2!} \bigg( \frac{\partial ^2f(x_n,y_n)}{\partial x^2} h^2+2 \frac{\partial ^2f(x_n,y_n)}{\partial x\partial y}hk + \frac{\partial ^2f(x_n,y_n)}{\partial y^2}k^2 \bigg) \\ \\ &+ \frac{1}{m!} \bigg( h \frac{\partial }{\partial x}+k \frac{\partial }{\partial y} \bigg)^mf(x_n,y_n)+ \cdots \end{align*} f(xn+h,yn+k)=f(xn,yn)+∂x∂f(xn,yn)h+∂y∂f(xn,yn)k+2!1(∂x2∂2f(xn,yn)h2+2∂x∂y∂2f(xn,yn)hk+∂y2∂2f(xn,yn)k2)+m!1(h∂x∂+k∂y∂)mf(xn,yn)+⋯
y ′ ( x n ) , y ′ ′ ( x n ) , y ′ ′ ′ ( x n ) {y'(x_n),y''(x_n),y'''(x_n)} y′(xn),y′′(xn),y′′′(xn) 的写法

因 y ′ ( x ) = f ( x , y ( x ) ) {y'(x)=f(x,y(x))} y′(x)=f(x,y(x)) ,所以若 y ( x n ) = y n {y(x_n)=y_n} y(xn)=yn ,则有
y ′ ( x n ) = f ( x n , y ( x n ) ) = f ( x n , y n ) = f n y ′ ′ ( x n ) = ∂ f ( x n , y n ) ∂ x + ∂ f ( x n , y n ) ∂ y y ′ ( x n ) = ∂ f n ∂ x + ∂ f n ∂ y f n y ′ ′ ′ ( x n ) = ∂ 2 f n ∂ x 2 + 2 ∂ 2 f n ∂ x ∂ y f n + ∂ 2 f n ∂ y 2 f n 2 + ∂ f n ∂ x ∂ f n ∂ y + ( ∂ f n ∂ y ) 2 f n \begin{align*} y'(x_n)=&f(x_n,y(x_n))=f(x_n,y_n)=f_n \\ \\ y''(x_n)=& \frac{\partial f(x_n,y_n)}{\partial x}+ \frac{\partial f(x_n,y_n)}{\partial y}y'(x_n)= \frac{\partial f_n}{\partial x}+ \frac{\partial f_n}{\partial y}f_n \\ \\ y'''(x_n)=& \frac{\partial ^2f_n}{\partial x^2}+ 2 \frac{\partial ^2f_n}{\partial x\partial y}f_n+ \frac{\partial ^2f_n}{\partial y^2}f_n^2+ \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y}+ (\frac{\partial f_n}{\partial y})^2f_n \end{align*} y′(xn)=y′′(xn)=y′′′(xn)=f(xn,y(xn))=f(xn,yn)=fn∂x∂f(xn,yn)+∂y∂f(xn,yn)y′(xn)=∂x∂fn+∂y∂fnfn∂x2∂2fn+2∂x∂y∂2fnfn+∂y2∂2fnfn2+∂x∂fn∂y∂fn+(∂y∂fn)2fn
关于改进Euler方法的局部截断误差分析

改进Euler方法格式:
{ y n + 1 = y n + h 2 [ k 1 + k 2 ] k 1 = f ( x n , y n ) k 2 = f ( x n + h , y n + h k 1 ) y 0 = α , n = 0 , 1 , 2 , ⋯   , N − 1 \begin{cases} y_{n+1}=y_n+ \frac{h}{2}[k_1+k_2]\\ k_1=f(x_n,y_n)\\ k_2=f(x_n+h,y_n+hk_1)\\ y_0= \alpha ,n=0,1,2, \cdots ,N-1 \end{cases} ⎩ ⎨ ⎧yn+1=yn+2h[k1+k2]k1=f(xn,yn)k2=f(xn+h,yn+hk1)y0=α,n=0,1,2,⋯,N−1

假设前 n {n} n 步的计算没有截断误差,即当 y n = y ( x n ) {y_n=y(x_n)} yn=y(xn) 时
k 1 = f ( x n , y n ) = f n k_1=f(x_n,y_n)=f_n k1=f(xn,yn)=fn

应用二元Taylor展开
k 2 = f ( x n + h , y n + h k 1 ) = f n + ∂ f n ∂ x h + ∂ f n ∂ y h k 1 + 1 2 ( ∂ 2 f n ∂ x 2 h 2 + 2 ∂ 2 f n ∂ x ∂ y h 2 k 1 + ∂ 2 f n ∂ y 2 h 2 k 1 2 ) + O ( h 3 ) \begin{align*} k_2=& f(x_n+h,y_n+hk_1) \\ \\ =&f_n+ \frac{\partial f_n}{\partial x}h+ \frac{\partial f_n}{\partial y}hk_1+ \frac{1}{2}( \frac{\partial^2 f_n}{\partial x^2} h^2+2 \frac{\partial^2 f_n}{\partial x\partial y}h^2k_1+ \frac{\partial^2 f_n}{\partial y^2}h^2k_1^2 ) + O(h^3) \end{align*} k2==f(xn+h,yn+hk1)fn+∂x∂fnh+∂y∂fnhk1+21(∂x2∂2fnh2+2∂x∂y∂2fnh2k1+∂y2∂2fnh2k12)+O(h3)

将 k 1 {k_1} k1 和 k 2 {k_2} k2 代入 y n + 1 {y_{n+1}} yn+1 ,然后整合按照 h {h} h 的升幂排列
y n + 1 = y n + h f n + h 2 2 ( ∂ f n ∂ x + ∂ f n ∂ y f n ) + h 3 4 ( ∂ 2 f n ∂ x 2 + 2 ∂ 2 f n ∂ x ∂ y f n + ∂ 2 f n ∂ y 2 f n 2 ) + O ( h 4 ) y_{n+1}=y_n+hf_n+ \frac{h^2}{2}(\frac{\partial f_n}{\partial x}+ \frac{\partial f_n}{\partial y}f_n)+ \frac{h^3}{4}( \frac{\partial^2 f_n}{\partial x^2}+ 2 \frac{\partial^2 f_n}{\partial x\partial y}f_n+ \frac{\partial^2 f_n}{\partial y^2}f_n^2)+ O(h^4) yn+1=yn+hfn+2h2(∂x∂fn+∂y∂fnfn)+4h3(∂x2∂2fn+2∂x∂y∂2fnfn+∂y2∂2fnfn2)+O(h4)

应用一元Taylor展开
y ( x n + 1 ) = y ( x n + h ) = y ( x n ) + y ′ ( x n ) h + y ′ ′ ( x n ) 2 ! h 2 + y ′ ′ ′ ( x n ) 3 ! h 3 + O ( h 4 ) y(x_{n+1})=y(x_n+h)=y(x_n)+y'(x_n)h+ \frac{y''(x_n)}{2!}h^2+\frac{y'''(x_n)}{3!}h^3+O(h^4) y(xn+1)=y(xn+h)=y(xn)+y′(xn)h+2!y′′(xn)h2+3!y′′′(xn)h3+O(h4)

将 y ′ ( x n ) , y ′ ′ ( x n ) , y ′ ′ ′ ( x n ) {y'(x_n),y''(x_n),y'''(x_n)} y′(xn),y′′(xn),y′′′(xn) 代入 y ( x n + 1 ) {y(x_{n+1})} y(xn+1) ,并按照 h {h} h 的升幂排列,有
y ( x n + 1 ) = y n + h f n + h 2 2 ( ∂ f n ∂ x + ∂ f n ∂ y f n ) + h 3 6 ( ∂ 2 f n ∂ x 2 + 2 ∂ 2 f n ∂ x ∂ y f n + ∂ 2 f n ∂ y 2 f n 2 + ∂ f n ∂ x ∂ f n ∂ y + ( ∂ f n ∂ y ) 2 f n ) + O ( h 4 ) \begin{align*} y(x_{n+1})=&y_n+hf_n+\frac{h^2}{2}(\frac{\partial f_n}{\partial x}+ \frac{\partial f_n}{\partial y}f_n) \\ \\ &+\frac{h^3}{6}( \frac{\partial^2 f_n}{\partial x^2}+ 2 \frac{\partial^2 f_n}{\partial x\partial y}f_n+ \frac{\partial^2 f_n}{\partial y^2}f_n^2+ \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y}+(\frac{\partial f_n}{\partial y})^2f_n)+O(h^4) \end{align*} y(xn+1)=yn+hfn+2h2(∂x∂fn+∂y∂fnfn)+6h3(∂x2∂2fn+2∂x∂y∂2fnfn+∂y2∂2fnfn2+∂x∂fn∂y∂fn+(∂y∂fn)2fn)+O(h4)

当 y n = y ( x n ) {y_n=y(x_n)} yn=y(xn) 时, y n + 1 {y_{n+1}} yn+1 的表达式与精确解 y ( x n + 1 ) {y(x_{n+1})} y(xn+1) 的前三项完全相同,因此想间可得其局部截断误差 y ( x n + 1 ) − y n + 1 = O ( h 3 ) {y(x_{n+1})-y_{n+1}=O(h^3)} y(xn+1)−yn+1=O(h3) 。

因此改进Euler方法是 2 {2} 2 阶方法。

[!example]-

已知求解常微分方程初值问题
{ y ′ = f ( x , y ) , x ∈ [ a , b ] y ( a ) = α \begin{cases} y'=f(x,y) ,&x\in[a,b]\\ y( a )= \alpha \end{cases} {y′=f(x,y),y(a)=αx∈[a,b]

的 差分公式
{ y n + 1 = y n + h 4 ( k 1 + 3 k 2 ) k 1 = f ( x n , y n ) k 2 = f ( x n + 2 3 h , y n + 2 3 h k 1 ) y 0 = α \begin{cases} y_{n+1}=y_n+ \frac{h}{4}(k_1+3k_2)\\ k_1=f(x_n,y_n) \\ k_2=f(x_n+ \frac{2}{3}h, y_n+ \frac{2}{3}hk_1)\\ y_0= \alpha \end{cases} ⎩ ⎨ ⎧yn+1=yn+4h(k1+3k2)k1=f(xn,yn)k2=f(xn+32h,yn+32hk1)y0=α

请问此差分公式是几阶方法?并写出截断误差的主项。

解:
k 1 = f n k_1=f_n k1=fn
k 2 = f n + ∂ f n ∂ x 2 3 h + ∂ f n ∂ y 2 3 h f n + 1 2 ( ∂ 2 f n ∂ x 2 4 9 h 2 + 2 ∂ 2 f n ∂ x ∂ y 4 9 h 2 f n + ∂ 2 f n ∂ y 2 4 9 h 2 f n 2 ) + O ( h 3 ) \begin{align*} k_2=&f_n+ \frac{\partial f_n}{\partial x} \frac{2}{3}h+ \frac{\partial f_n}{\partial y}\frac{2}{3}hf_n \\ \\ &+\frac{1}{2} ( \frac{\partial^2 f_n}{\partial x^2} \frac{4}{9} h^2+ 2 \frac{\partial^2 f_n}{\partial x\partial y} \frac{4}{9}h^2f_n + \frac{\partial^2 f_n}{\partial y^2} \frac{4}{9}h^2f_n^2 )+O(h^3) \end{align*} k2=fn+∂x∂fn32h+∂y∂fn32hfn+21(∂x2∂2fn94h2+2∂x∂y∂2fn94h2fn+∂y2∂2fn94h2fn2)+O(h3)

将 k 1 {k_1} k1 和 k 2 {k_2} k2 代入 y n + 1 {y_{n+1}} yn+1 ,然后整合按照 h {h} h 的升幂排列
y n + 1 = y n + f n h + h 2 2 ( ∂ f n ∂ x + ∂ f n ∂ y f n ) + h 3 6 ( ∂ 2 f n ∂ x 2 + 2 ∂ 2 f n ∂ x ∂ y f n + ∂ 2 f n ∂ y 2 f n 2 ) + O ( h 4 ) \begin{align*} y_{n+1}=&y_n+ f_nh+ \frac{h^2}{2}(\frac{\partial f_n}{\partial x}+ \frac{\partial f_n}{\partial y}f_n) \\ \\ &+ \frac{h^3}{6}(\frac{\partial^2 f_n}{\partial x^2}+ 2 \frac{\partial^2 f_n}{\partial x\partial y}f_n+ \frac{\partial^2 f_n}{\partial y^2}f_n^2 )+O(h^4) \end{align*} yn+1=yn+fnh+2h2(∂x∂fn+∂y∂fnfn)+6h3(∂x2∂2fn+2∂x∂y∂2fnfn+∂y2∂2fnfn2)+O(h4)

精确解
y ( x n + 1 ) = y ( x n ) + y ′ ( x n ) h + y ′ ′ ( x n ) 2 ! h 2 + y ′ ′ ′ ( x n ) 3 ! h 3 + O ( h 4 ) = y n + f n h + h 2 2 ( ∂ f n ∂ x + ∂ f n ∂ y f n ) + h 3 6 ( ∂ 2 f n ∂ x 2 + 2 ∂ 2 f n ∂ x ∂ y f n + ∂ 2 f n ∂ y 2 f n 2 + ∂ f n ∂ x ∂ f n ∂ y + ( ∂ f n ∂ y ) 2 f n ) + O ( h 4 ) \begin{align*} y(x_{n+1})=&y(x_n)+y'(x_n)h+ \frac{y''(x_n)}{2!}h^2+ \frac{y'''(x_n)}{3!}h^3+O(h^4) \\ \\ =& y_n+ f_nh+ \frac{h^2}{2}(\frac{\partial f_n}{\partial x}+ \frac{\partial f_n}{\partial y}f_n) \\ \\ &+ \frac{h^3}{6}(\frac{\partial^2 f_n}{\partial x^2}+ 2 \frac{\partial^2 f_n}{\partial x\partial y}f_n+ \frac{\partial^2 f_n}{\partial y^2}f_n^2 + \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y}+ (\frac{\partial f_n}{\partial y})^2f_n )+O(h^4) \end{align*} y(xn+1)==y(xn)+y′(xn)h+2!y′′(xn)h2+3!y′′′(xn)h3+O(h4)yn+fnh+2h2(∂x∂fn+∂y∂fnfn)+6h3(∂x2∂2fn+2∂x∂y∂2fnfn+∂y2∂2fnfn2+∂x∂fn∂y∂fn+(∂y∂fn)2fn)+O(h4)
y ( x n + 1 ) − y n + 1 = 1 6 ( ∂ f n ∂ x ∂ f n ∂ y + ( ∂ f n ∂ y ) 2 f n ) h 3 + O ( h 4 ) = O ( h 3 ) \begin{align*} y(x_{n+1})-y_{n+1}= \frac{1}{6}( \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y}+ (\frac{\partial f_n}{\partial y})^2f_n)h^3+ O(h^4)=O(h^3) \end{align*} y(xn+1)−yn+1=61(∂x∂fn∂y∂fn+(∂y∂fn)2fn)h3+O(h4)=O(h3)

所以是二阶方法。

阶段误差为
1 6 ( ∂ f n ∂ x ∂ f n ∂ y + ( ∂ f n ∂ y ) 2 f n ) h 3 \frac{1}{6}( \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y}+ (\frac{\partial f_n}{\partial y})^2f_n)h^3 61(∂x∂fn∂y∂fn+(∂y∂fn)2fn)h3


龙格-库塔(Runge-Kutta)公式

基本思想是设法计算f(x,y)在某些节点上的函数值,然后对这些函数值做线性组合,构造含待定参数的近似计算公式,再把近似计算公式和真实解的泰勒展开式相比较,并确定参数的取值一时的前面的若干项吻合,从而获得一定精度的计算公式。

改进欧拉方法是二段二阶龙格库塔公式中的一种。

高阶龙格库塔公式一步计算 f ( x , y ) {f(x,y)} f(x,y) 的次数大于阶数,所以一般不使用。

常用龙格库塔公式如下:
三段三阶龙格库塔公式
{ y n + 1 = y n + 1 6 ( k 1 + 4 k 2 + k 3 ) k 1 = h f ( x n , y n ) k 2 = h f ( x n + 0.5 h , y n + 0.5 k 1 ) k 3 = h f ( x n + h , y n − k 1 + 2 k 2 ) \begin{cases} y_{n+1}=y_n+ \frac{1}{6}(k_1+4k_2+k_3) \\ \\ k_1=hf(x_n,y_n) \\ \\ k_2=hf(x_n+0.5h,y_n+0.5k_1) \\ \\ k_3=hf(x_n+h,y_n-k_1+2k_2) \end{cases} ⎩ ⎨ ⎧yn+1=yn+61(k1+4k2+k3)k1=hf(xn,yn)k2=hf(xn+0.5h,yn+0.5k1)k3=hf(xn+h,yn−k1+2k2)

标准四段四阶龙格库塔公式
{ y n + 1 = y n + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) k 1 = h f ( x n , y n ) k 2 = h f ( x n + 0.5 h , y n + 0.5 k 1 ) k 3 = h f ( x n + 0.5 h , y n + 0.5 k 2 ) k 4 = h f ( x n + h , y n + k 3 ) \begin{cases} y_{n+1}=y_n+ \frac{1}{6}(k_1+2k_2+2k_3+k_4) \\ \\ k_1=hf(x_n,y_n) \\ \\ k_2=hf(x_n+0.5h,y_n+0.5k_1) \\ \\ k_3=hf(x_n+0.5h,y_n+0.5k_2) \\ \\ k_4 = hf(x_n+h,y_n+k_3) \end{cases} ⎩ ⎨ ⎧yn+1=yn+61(k1+2k2+2k3+k4)k1=hf(xn,yn)k2=hf(xn+0.5h,yn+0.5k1)k3=hf(xn+0.5h,yn+0.5k2)k4=hf(xn+h,yn+k3)

matlab实现

matlab 复制代码
[x,y] = ode4RK(@f,1,0,1,10);
[x' y']
function r = f(x,y)
    r = y-2*x./y;
end
            
%% 标准四阶四段龙格库塔公式
% 输入函数,初值,起点,终点,区间数
% 输出每个点与对应的函数值
function [x,y] = ode4RK(f,y0,a,b,n)
    h = (b-a)/n;
    x = linspace(a,b,n+1);
    y(1) = y0;
    for i = 1:n
        k1 = h*f(x(i),y(i));
        k2 = h*f(x(i)+0.5*h,y(i)+0.5*k1);
        k3 = h*f(x(i)+0.5*h,y(i)+0.5*k2);
        k4 = h*f(x(i)+h,y(i)+k3);
        y(i+1) = y(i)+1/6*(k1+2*k2+2*k3+k4);
    end
end

下链


相关推荐
Evand J10 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
我是博博啦16 小时前
matlab例题
人工智能·算法·matlab
2402_8713219517 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
Matlab程序猿小助手1 天前
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
开发语言·嵌入式硬件·算法·matlab·机器人·无人机
Matlab精灵2 天前
使用MATLAB进行字符串处理
开发语言·matlab
机器学习之心2 天前
POD-Transformer多变量回归预测(Matlab)
matlab·回归·transformer·pod-transformer
WangYan20222 天前
高光谱遥感是什么?高光谱遥感数据如何处理?(基于Matlab和Python多案例解析)从小白到精通
matlab·高光谱遥感数据处理·混合像元分解
Matlab精灵3 天前
利用Matlab函数实现深度学习算法
深度学习·算法·matlab
十七算法实验室3 天前
Matlab实现北方苍鹰优化算法优化随机森林算法模型 (NGO-RF)(附源码)
开发语言·深度学习·算法·决策树·随机森林·机器学习·matlab
mailangduoduo3 天前
基于matlab的语音信号去噪的App Designer 设计
matlab·gui设计·语音去噪·app设计